On growth of generalized Grigorchuk's overgroups

Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
1. Verfasser: Samarakoon, S.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188556
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth.
ISSN:1726-3255