On growth of generalized Grigorchuk's overgroups

Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
1. Verfasser: Samarakoon, S.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188556
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188556
record_format dspace
spelling Samarakoon, S.T.
2023-03-05T17:34:30Z
2023-03-05T17:34:30Z
2020
On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.
1726-3255
DOI:10.12958/adm1451
2010 MSC: 20E08
https://nasplib.isofts.kiev.ua/handle/123456789/188556
Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On growth of generalized Grigorchuk's overgroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On growth of generalized Grigorchuk's overgroups
spellingShingle On growth of generalized Grigorchuk's overgroups
Samarakoon, S.T.
title_short On growth of generalized Grigorchuk's overgroups
title_full On growth of generalized Grigorchuk's overgroups
title_fullStr On growth of generalized Grigorchuk's overgroups
title_full_unstemmed On growth of generalized Grigorchuk's overgroups
title_sort on growth of generalized grigorchuk's overgroups
author Samarakoon, S.T.
author_facet Samarakoon, S.T.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188556
citation_txt On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT samarakoonst ongrowthofgeneralizedgrigorchuksovergroups
first_indexed 2025-12-01T02:43:23Z
last_indexed 2025-12-01T02:43:23Z
_version_ 1850859109260197888