On small world non-Sunada twins and cellular Voronoi diagrams

Special infinite families of regular graphs of unbounded degree and of bounded diameter (small world graphs) are considered. Two families of small world graphs Gi and Hi form a family of non-Sunada twins if Gi and Hi are isospectral of bounded diameter but groups Aut(Gi) and Aut(Hi) are nonisomorphi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
1. Verfasser: Ustimenko, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188557
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On small world non-Sunada twins and cellular Voronoi diagrams / V. Ustimenko // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 118–142. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Special infinite families of regular graphs of unbounded degree and of bounded diameter (small world graphs) are considered. Two families of small world graphs Gi and Hi form a family of non-Sunada twins if Gi and Hi are isospectral of bounded diameter but groups Aut(Gi) and Aut(Hi) are nonisomorphic. We say that a family of non-Sunada twins is unbalanced if each Gi is edge-transitive but each Hi is edge-intransitive. If all Gi and Hi are edge-transitive we have a balanced family of small world non-Sunada twins. We say that a family of non-Sunada twins is strongly unbalanced if each Gi is edge-transitive but each Hi is edge-intransitive. We use term edge disbalanced for the family of non-Sunada twins such that all graphs Gi and Hi are edge-intransitive. We present explicit constructions of the above defined families. Two new families of distance-regular—but not distance-transitive—graphs will be introduced.