Modules with minimax Cousin cohomologies
Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p:...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2020 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188558 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188558 |
|---|---|
| record_format |
dspace |
| spelling |
Vahidi, A. 2023-03-05T17:40:08Z 2023-03-05T17:40:08Z 2020 Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. 1726-3255 DOI:10.12958/adm528 2010 MSC: 13D02, 13D03, 13D45, 13E10. https://nasplib.isofts.kiev.ua/handle/123456789/188558 Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p: (i) the nth Bass number of X with respect to p is finite; (ii) the nth local cohomology module of Xp with respect to pRp is Artinian. This research was in part supported by a grant from Payame Noor University en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Modules with minimax Cousin cohomologies Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Modules with minimax Cousin cohomologies |
| spellingShingle |
Modules with minimax Cousin cohomologies Vahidi, A. |
| title_short |
Modules with minimax Cousin cohomologies |
| title_full |
Modules with minimax Cousin cohomologies |
| title_fullStr |
Modules with minimax Cousin cohomologies |
| title_full_unstemmed |
Modules with minimax Cousin cohomologies |
| title_sort |
modules with minimax cousin cohomologies |
| author |
Vahidi, A. |
| author_facet |
Vahidi, A. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p: (i) the nth Bass number of X with respect to p is finite; (ii) the nth local cohomology module of Xp with respect to pRp is Artinian.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188558 |
| fulltext |
|
| citation_txt |
Modules with minimax Cousin cohomologies / A. Vahidi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 143–149. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT vahidia moduleswithminimaxcousincohomologies |
| first_indexed |
2025-11-24T09:25:50Z |
| last_indexed |
2025-11-24T09:25:50Z |
| _version_ |
1850844562799460352 |