Some results on the main supergraph of finite groups
Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). In this paper, we will show that G ≅ PSL(2, p) or PGL(2, p) if and only if S(G) ≅ S(PSL(2, p)) or S( PGL(2, p)), respectively. Also, we...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2020 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188561 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Some results on the main supergraph of finite groups / A.K. Asboei, S.S. Salehi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 172–178. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188561 |
|---|---|
| record_format |
dspace |
| spelling |
Asboei, A.K. Salehi, S.S. 2023-03-06T14:22:13Z 2023-03-06T14:22:13Z 2020 Some results on the main supergraph of finite groups / A.K. Asboei, S.S. Salehi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 172–178. — Бібліогр.: 17 назв. — англ. 1726-3255 DOI:10.12958/adm584 2010 MSC: 20D08; 05C25. https://nasplib.isofts.kiev.ua/handle/123456789/188561 Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). In this paper, we will show that G ≅ PSL(2, p) or PGL(2, p) if and only if S(G) ≅ S(PSL(2, p)) or S( PGL(2, p)), respectively. Also, we will show that if M is a sporadic simple group, then G ≅ M if only if S(G) ≅ S(M). The authors would like to thank the referee for his/her careful reading and useful suggestions which led us to improve the paper. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Some results on the main supergraph of finite groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Some results on the main supergraph of finite groups |
| spellingShingle |
Some results on the main supergraph of finite groups Asboei, A.K. Salehi, S.S. |
| title_short |
Some results on the main supergraph of finite groups |
| title_full |
Some results on the main supergraph of finite groups |
| title_fullStr |
Some results on the main supergraph of finite groups |
| title_full_unstemmed |
Some results on the main supergraph of finite groups |
| title_sort |
some results on the main supergraph of finite groups |
| author |
Asboei, A.K. Salehi, S.S. |
| author_facet |
Asboei, A.K. Salehi, S.S. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). In this paper, we will show that G ≅ PSL(2, p) or PGL(2, p) if and only if S(G) ≅ S(PSL(2, p)) or S( PGL(2, p)), respectively. Also, we will show that if M is a sporadic simple group, then G ≅ M if only if S(G) ≅ S(M).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188561 |
| citation_txt |
Some results on the main supergraph of finite groups / A.K. Asboei, S.S. Salehi // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 172–178. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT asboeiak someresultsonthemainsupergraphoffinitegroups AT salehiss someresultsonthemainsupergraphoffinitegroups |
| first_indexed |
2025-12-07T16:08:35Z |
| last_indexed |
2025-12-07T16:08:35Z |
| _version_ |
1850866365192208384 |