On a product of two formational tcc-subgroups
A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A a...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2020 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2020
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188571 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188571 |
|---|---|
| record_format |
dspace |
| spelling |
Trofimuk, A. 2023-03-06T14:58:51Z 2023-03-06T14:58:51Z 2020 On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. 1726-3255 DOI:10.12958/adm1396 2010 MSC: 20D10. https://nasplib.isofts.kiev.ua/handle/123456789/188571 A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups. For the 70th anniversary of L. A. Kurdachenko. This work was supported by the BRFFR (grant No. F19RM-071). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On a product of two formational tcc-subgroups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On a product of two formational tcc-subgroups |
| spellingShingle |
On a product of two formational tcc-subgroups Trofimuk, A. |
| title_short |
On a product of two formational tcc-subgroups |
| title_full |
On a product of two formational tcc-subgroups |
| title_fullStr |
On a product of two formational tcc-subgroups |
| title_full_unstemmed |
On a product of two formational tcc-subgroups |
| title_sort |
on a product of two formational tcc-subgroups |
| author |
Trofimuk, A. |
| author_facet |
Trofimuk, A. |
| publishDate |
2020 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188571 |
| citation_txt |
On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT trofimuka onaproductoftwoformationaltccsubgroups |
| first_indexed |
2025-12-07T16:30:05Z |
| last_indexed |
2025-12-07T16:30:05Z |
| _version_ |
1850867717320474624 |