On a product of two formational tcc-subgroups

A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2020
1. Verfasser: Trofimuk, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188571
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188571
record_format dspace
spelling Trofimuk, A.
2023-03-06T14:58:51Z
2023-03-06T14:58:51Z
2020
On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ.
1726-3255
DOI:10.12958/adm1396
2010 MSC: 20D10.
https://nasplib.isofts.kiev.ua/handle/123456789/188571
A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups.
For the 70th anniversary of L. A. Kurdachenko. This work was supported by the BRFFR (grant No. F19RM-071).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On a product of two formational tcc-subgroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a product of two formational tcc-subgroups
spellingShingle On a product of two formational tcc-subgroups
Trofimuk, A.
title_short On a product of two formational tcc-subgroups
title_full On a product of two formational tcc-subgroups
title_fullStr On a product of two formational tcc-subgroups
title_full_unstemmed On a product of two formational tcc-subgroups
title_sort on a product of two formational tcc-subgroups
author Trofimuk, A.
author_facet Trofimuk, A.
publishDate 2020
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any X ≤ A and Y ≤ T there exists an element u ∈ hX, Y i such that XYᵘ ≤ G. The notation H ≤ G means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to F, when A and B belong to F and F is a saturated formation of soluble groups such that U ⊆ F. Here U is the formation of all supersoluble groups.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188571
citation_txt On a product of two formational tcc-subgroups / A. Trofimuk // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 282–289. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT trofimuka onaproductoftwoformationaltccsubgroups
first_indexed 2025-12-07T16:30:05Z
last_indexed 2025-12-07T16:30:05Z
_version_ 1850867717320474624