Від темпоральних даних до динамічних каузальних моделей

Доповідь присвячена огляду проблем виведення динамічних каузальних моделей з емпіричних даних, з акцентом на моделі векторних авторегресійних процесів. Типізовано і охарактеризовано схеми збору, архітектуру і форми репрезентації темпоральних даних та часових рядів даних. Показано, що вимоги до архіт...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Проблеми програмування
Дата:2022
Автор: Балабанов, O.С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут програмних систем НАН України 2022
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188642
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Від темпоральних даних до динамічних каузальних моделей / O.С. Балабанов // Проблеми програмування. — 2022. — № 3-4. — С. 183-195. — Бібліогр.: 22 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188642
record_format dspace
spelling Балабанов, O.С.
2023-03-10T19:12:19Z
2023-03-10T19:12:19Z
2022
Від темпоральних даних до динамічних каузальних моделей / O.С. Балабанов // Проблеми програмування. — 2022. — № 3-4. — С. 183-195. — Бібліогр.: 22 назв. — укр.
1727-4907
DOI: https://doi.org/10.15407/pp2022.03-04.183
https://nasplib.isofts.kiev.ua/handle/123456789/188642
004.048:519.7
Доповідь присвячена огляду проблем виведення динамічних каузальних моделей з емпіричних даних, з акцентом на моделі векторних авторегресійних процесів. Типізовано і охарактеризовано схеми збору, архітектуру і форми репрезентації темпоральних даних та часових рядів даних. Показано, що вимоги до архітектури темпоральних даних диктуються характером динамічного процесу і потребами виведення адекватної моделі. Виділено основні типи динамічних процесів, зокрема, рекурентні процеси, «запрограмовані» процеси, потоки стохастичних подій, лічильні процеси тощо. Для характеристики довжини темпоральних даних запропоновано кілька часових горизонтів, визначених на основі структури моделі, лагу каузальних зв’язків процесу, довжини шляхів впливу, довжини зворотних зв’язків тощо. Частота вимірювання даних критично важлива для адекватності виведеної моделі і визначається тривалістю елементарних впливів між компонентами векторного процесу і швидкістю дії зворотних зв’язків. Відображено роль припущень у виведенні динамічної моделі з даних, зокрема, припущень стаціонарності та регулярності структури. Виділено особливості виведення динамічних каузальних моделей (у порівнянні із статичними моделями), окреслено тактику врахування темпорального порядку змінних. Проаналізовано проблеми, пов’язані з невідомим лагом післядії та існуванням прихованих автокорельованих часових рядів. Представлено концепцію каузальності за Грейнджером і вказано на її недосконалість в реальних умовах неповноти інформації. Проведено порівняльний аналіз критерію каузальності за Грейнджером та правил орієнтації ребер в апараті каузальних мереж з точки зору їх спроможності виявляти каузальні відношення.
We present a brief review of dynamic causal model inference from data. A vector autoregressive models is of our prime interest. The architecture, representation and schemes of measurement of temporal data and time series data are outlined. We argue that requirement to data characteristics should come from the nature of dynamic process at hand and goals of model inference. To describe and evaluate temporal data one may use terms of longitude, measurement frequency etc. Data measurement frequency is crucial factor in order to an inferred model be adequate. Data longitude and observation session duration may be expressed via several temporal horizons, such as closest horizon, 2-step horizon, influence attainability horizon, oscillatory horizon, and evolutionary horizon. To justify a dynamic causal model inference from data, analyst needs to assume the dynamic process is stationary or at least obeys structural regularity. The main specificity of task of dynamic causal model inference is known temporal order of variables and certain structural regularity. If maximal lag of influence is unknown, inference of dynamic causal model faces additional problems. We examine the Granger’s causality concept and outline its deficiency in real circumstances. It is argued that Granger causality is incorrect as practical tool of causal discovery. In contrast, certain rules of edge orientation (included in known constraint-based algorithms of model inference) can reveal unconfounded causal relationship.
uk
Інститут програмних систем НАН України
Проблеми програмування
Моделі і засоби систем баз даних та знань
Від темпоральних даних до динамічних каузальних моделей
From temporal data to dynamic causal models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Від темпоральних даних до динамічних каузальних моделей
spellingShingle Від темпоральних даних до динамічних каузальних моделей
Балабанов, O.С.
Моделі і засоби систем баз даних та знань
title_short Від темпоральних даних до динамічних каузальних моделей
title_full Від темпоральних даних до динамічних каузальних моделей
title_fullStr Від темпоральних даних до динамічних каузальних моделей
title_full_unstemmed Від темпоральних даних до динамічних каузальних моделей
title_sort від темпоральних даних до динамічних каузальних моделей
author Балабанов, O.С.
author_facet Балабанов, O.С.
topic Моделі і засоби систем баз даних та знань
topic_facet Моделі і засоби систем баз даних та знань
publishDate 2022
language Ukrainian
container_title Проблеми програмування
publisher Інститут програмних систем НАН України
format Article
title_alt From temporal data to dynamic causal models
description Доповідь присвячена огляду проблем виведення динамічних каузальних моделей з емпіричних даних, з акцентом на моделі векторних авторегресійних процесів. Типізовано і охарактеризовано схеми збору, архітектуру і форми репрезентації темпоральних даних та часових рядів даних. Показано, що вимоги до архітектури темпоральних даних диктуються характером динамічного процесу і потребами виведення адекватної моделі. Виділено основні типи динамічних процесів, зокрема, рекурентні процеси, «запрограмовані» процеси, потоки стохастичних подій, лічильні процеси тощо. Для характеристики довжини темпоральних даних запропоновано кілька часових горизонтів, визначених на основі структури моделі, лагу каузальних зв’язків процесу, довжини шляхів впливу, довжини зворотних зв’язків тощо. Частота вимірювання даних критично важлива для адекватності виведеної моделі і визначається тривалістю елементарних впливів між компонентами векторного процесу і швидкістю дії зворотних зв’язків. Відображено роль припущень у виведенні динамічної моделі з даних, зокрема, припущень стаціонарності та регулярності структури. Виділено особливості виведення динамічних каузальних моделей (у порівнянні із статичними моделями), окреслено тактику врахування темпорального порядку змінних. Проаналізовано проблеми, пов’язані з невідомим лагом післядії та існуванням прихованих автокорельованих часових рядів. Представлено концепцію каузальності за Грейнджером і вказано на її недосконалість в реальних умовах неповноти інформації. Проведено порівняльний аналіз критерію каузальності за Грейнджером та правил орієнтації ребер в апараті каузальних мереж з точки зору їх спроможності виявляти каузальні відношення. We present a brief review of dynamic causal model inference from data. A vector autoregressive models is of our prime interest. The architecture, representation and schemes of measurement of temporal data and time series data are outlined. We argue that requirement to data characteristics should come from the nature of dynamic process at hand and goals of model inference. To describe and evaluate temporal data one may use terms of longitude, measurement frequency etc. Data measurement frequency is crucial factor in order to an inferred model be adequate. Data longitude and observation session duration may be expressed via several temporal horizons, such as closest horizon, 2-step horizon, influence attainability horizon, oscillatory horizon, and evolutionary horizon. To justify a dynamic causal model inference from data, analyst needs to assume the dynamic process is stationary or at least obeys structural regularity. The main specificity of task of dynamic causal model inference is known temporal order of variables and certain structural regularity. If maximal lag of influence is unknown, inference of dynamic causal model faces additional problems. We examine the Granger’s causality concept and outline its deficiency in real circumstances. It is argued that Granger causality is incorrect as practical tool of causal discovery. In contrast, certain rules of edge orientation (included in known constraint-based algorithms of model inference) can reveal unconfounded causal relationship.
issn 1727-4907
url https://nasplib.isofts.kiev.ua/handle/123456789/188642
citation_txt Від темпоральних даних до динамічних каузальних моделей / O.С. Балабанов // Проблеми програмування. — 2022. — № 3-4. — С. 183-195. — Бібліогр.: 22 назв. — укр.
work_keys_str_mv AT balabanovos vídtemporalʹnihdanihdodinamíčnihkauzalʹnihmodelei
AT balabanovos fromtemporaldatatodynamiccausalmodels
first_indexed 2025-12-07T13:24:44Z
last_indexed 2025-12-07T13:24:44Z
_version_ 1850856056425545728