Features of building recommendation systems based on neural network technology using multithreading

The article is devoted to the creation of a recommendation system for tourists regarding hotels using a neural network based on a multilayer perceptron. The work uses the mechanism of parallelization of the training sample of the neural network. To check the quality of the provided recommendations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Komleva, N.O., Zinovatna, S.L., Liubchenko, V.V., Komlevoi, O.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут програмних систем НАН України 2022
Schriftenreihe:Проблеми програмування
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188652
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Features of building recommendation systems based on neural network technology using multithreading / N.O. Komleva, S.L. Zinovatna, V.V. Liubchenko, O.M. Komlevoi // Проблеми програмування. — 2022. — № 3-4. — С. 289-300. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The article is devoted to the creation of a recommendation system for tourists regarding hotels using a neural network based on a multilayer perceptron. The work uses the mechanism of parallelization of the training sample of the neural network. To check the quality of the provided recommendations, the average absolute and root mean square errors, accuracy and completeness were used. The results of the experiments showed that when analyzing 10 html pages with descriptions of hotels, the metrics of root mean square error and accuracy gave the best results at 500,000 epochs of neural network training when using 8 processors.