Features of building recommendation systems based on neural network technology using multithreading

The article is devoted to the creation of a recommendation system for tourists regarding hotels using a neural network based on a multilayer perceptron. The work uses the mechanism of parallelization of the training sample of the neural network. To check the quality of the provided recommendations,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Komleva, N.O., Zinovatna, S.L., Liubchenko, V.V., Komlevoi, O.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2022
Назва видання:Проблеми програмування
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188652
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Features of building recommendation systems based on neural network technology using multithreading / N.O. Komleva, S.L. Zinovatna, V.V. Liubchenko, O.M. Komlevoi // Проблеми програмування. — 2022. — № 3-4. — С. 289-300. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The article is devoted to the creation of a recommendation system for tourists regarding hotels using a neural network based on a multilayer perceptron. The work uses the mechanism of parallelization of the training sample of the neural network. To check the quality of the provided recommendations, the average absolute and root mean square errors, accuracy and completeness were used. The results of the experiments showed that when analyzing 10 html pages with descriptions of hotels, the metrics of root mean square error and accuracy gave the best results at 500,000 epochs of neural network training when using 8 processors.