Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188677 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188677 |
|---|---|
| record_format |
dspace |
| spelling |
Ferreira, J.C.M. Marietto, M.G.B. 2023-03-11T13:17:04Z 2023-03-11T13:17:04Z 2021 Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1482 2020 MSC: 47B48, 46L10 https://nasplib.isofts.kiev.ua/handle/123456789/188677 In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
| spellingShingle |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras Ferreira, J.C.M. Marietto, M.G.B. |
| title_short |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
| title_full |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
| title_fullStr |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
| title_full_unstemmed |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras |
| title_sort |
mappings preserving sum of products a ◦ b + ba* on factor von neumann algebras |
| author |
Ferreira, J.C.M. Marietto, M.G.B. |
| author_facet |
Ferreira, J.C.M. Marietto, M.G.B. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188677 |
| citation_txt |
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT ferreirajcm mappingspreservingsumofproductsabbaonfactorvonneumannalgebras AT mariettomgb mappingspreservingsumofproductsabbaonfactorvonneumannalgebras |
| first_indexed |
2025-12-07T19:18:16Z |
| last_indexed |
2025-12-07T19:18:16Z |
| _version_ |
1850878298792394752 |