Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras

In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Ferreira, J.C.M., Marietto, M.G.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188677
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188677
record_format dspace
spelling Ferreira, J.C.M.
Marietto, M.G.B.
2023-03-11T13:17:04Z
2023-03-11T13:17:04Z
2021
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ.
1726-3255
DOI:10.12958/adm1482
2020 MSC: 47B48, 46L10
https://nasplib.isofts.kiev.ua/handle/123456789/188677
In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
spellingShingle Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
Ferreira, J.C.M.
Marietto, M.G.B.
title_short Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
title_full Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
title_fullStr Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
title_full_unstemmed Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
title_sort mappings preserving sum of products a ◦ b + ba* on factor von neumann algebras
author Ferreira, J.C.M.
Marietto, M.G.B.
author_facet Ferreira, J.C.M.
Marietto, M.G.B.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper, we proved that a bijective mapping Φ : A → B satisfies Φ(a ◦ b + baΦ) = Φ(a) ◦ Φ(b) + Φ(b)Φ(a)* (where ◦ is the special Jordan product on A and B, respectively), for all elements a, b ∈ A, if and only if Φ is a ∗-ring isomorphism. In particular, if the von Neumann algebras A and B are type I factors, then Φ is a unitary isomorphism or a conjugate unitary isomorphism.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188677
citation_txt Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras / J.C.M. Ferreira, M.G.B. Marietto // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 61–70. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT ferreirajcm mappingspreservingsumofproductsabbaonfactorvonneumannalgebras
AT mariettomgb mappingspreservingsumofproductsabbaonfactorvonneumannalgebras
first_indexed 2025-12-07T19:18:16Z
last_indexed 2025-12-07T19:18:16Z
_version_ 1850878298792394752