On extension of classical Baer results to Poisson algebras

In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Kurdachenko, L.A., Pypka, A.A., Subbotin I.Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188679
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On extension of classical Baer results to Poisson algebras / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 84–108. — Бібліогр.: 52 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific field) has a finite codimension and P does not contain zero divisors, then P is an abelian algebra.
ISSN:1726-3255