On extension of classical Baer results to Poisson algebras
In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific fi...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188679 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On extension of classical Baer results to Poisson algebras / L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 84–108. — Бібліогр.: 52 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | In this paper we prove that if P is a Poisson algebra and the n-th hypercenter (center) of P has a finite codimension, then P includes a finite-dimensional ideal K such that P/K is nilpotent (abelian). As a corollary, we show that if the n-th hypercenter of a Poisson algebra P (over some specific field) has a finite codimension and P does not contain zero divisors, then P is an abelian algebra.
|
|---|---|
| ISSN: | 1726-3255 |