On the structure of some groups having finite contranormal subgroups

Following J.S. Rose, a subgroup H of the group G is said to be contranormal in G, if G = Hᴳ. In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal p-subgroup.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Kurdachenko, L.A., Semko, N.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188680
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the structure of some groups having finite contranormal subgroups / L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 109–119. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188680
record_format dspace
spelling Kurdachenko, L.A.
Semko, N.N.
2023-03-11T13:26:09Z
2023-03-11T13:26:09Z
2021
On the structure of some groups having finite contranormal subgroups / L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 109–119. — Бібліогр.: 9 назв. — англ.
1726-3255
DOI:10.12958/adm1724
2020 MSC: 20E99, 20F18, 20F19.
https://nasplib.isofts.kiev.ua/handle/123456789/188680
Following J.S. Rose, a subgroup H of the group G is said to be contranormal in G, if G = Hᴳ. In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal p-subgroup.
Dedicated to the 60th anniversary of the Department of Algebra and Mathematical Logic of Taras Shevchenko National University of Kyiv The first author is supported by the National Research Foundation of Ukraine (grant no. 2020.02/0066).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the structure of some groups having finite contranormal subgroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the structure of some groups having finite contranormal subgroups
spellingShingle On the structure of some groups having finite contranormal subgroups
Kurdachenko, L.A.
Semko, N.N.
title_short On the structure of some groups having finite contranormal subgroups
title_full On the structure of some groups having finite contranormal subgroups
title_fullStr On the structure of some groups having finite contranormal subgroups
title_full_unstemmed On the structure of some groups having finite contranormal subgroups
title_sort on the structure of some groups having finite contranormal subgroups
author Kurdachenko, L.A.
Semko, N.N.
author_facet Kurdachenko, L.A.
Semko, N.N.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Following J.S. Rose, a subgroup H of the group G is said to be contranormal in G, if G = Hᴳ. In a certain sense, contranormal subgroups are antipodes to subnormal subgroups. We study the structure of Abelian-by-nilpotent groups having a finite proper contranormal p-subgroup.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188680
citation_txt On the structure of some groups having finite contranormal subgroups / L.A. Kurdachenko, N.N. Semko // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 109–119. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT kurdachenkola onthestructureofsomegroupshavingfinitecontranormalsubgroups
AT semkonn onthestructureofsomegroupshavingfinitecontranormalsubgroups
first_indexed 2025-11-27T17:24:54Z
last_indexed 2025-11-27T17:24:54Z
_version_ 1850852597393522688