Structure of relatively free trioids
Loday and Ronco introduced the notions of a trioid and a trialgebra, and constructed the free trioid of rank 1 and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free tri...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2021 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188682 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Structure of relatively free trioids / A.V. Zhuchok // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 1. — С. 152–166. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Loday and Ronco introduced the notions of a trioid and a trialgebra, and constructed the free trioid of rank 1 and the free trialgebra. This paper is a survey of recent developments in the study of free objects in the varieties of trioids and trialgebras. We present the constructions of the free trialgebra and the free trioid, the free commutative trioid, the free n-nilpotent trioid, the free left (right) n-trinilpotent trioid, and the free rectangular trioid. Some of these results can be applied to constructing relatively free trialgebras.
|
|---|---|
| ISSN: | 1726-3255 |