On (co)pure Baer injective modules

For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every modu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2021
Автор: Hamid, M.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2021
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/188708
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188708
record_format dspace
spelling Hamid, M.F.
2023-03-11T16:03:16Z
2023-03-11T16:03:16Z
2021
On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.
1726-3255
DOI:10.12958/adm1209
2020 MSC: 16D50.
https://nasplib.isofts.kiev.ua/handle/123456789/188708
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On (co)pure Baer injective modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On (co)pure Baer injective modules
spellingShingle On (co)pure Baer injective modules
Hamid, M.F.
title_short On (co)pure Baer injective modules
title_full On (co)pure Baer injective modules
title_fullStr On (co)pure Baer injective modules
title_full_unstemmed On (co)pure Baer injective modules
title_sort on (co)pure baer injective modules
author Hamid, M.F.
author_facet Hamid, M.F.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188708
citation_txt On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT hamidmf oncopurebaerinjectivemodules
first_indexed 2025-11-29T12:24:22Z
last_indexed 2025-11-29T12:24:22Z
_version_ 1850854950839517184