On (co)pure Baer injective modules
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every modu...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2021 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188708 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188708 |
|---|---|
| record_format |
dspace |
| spelling |
Hamid, M.F. 2023-03-11T16:03:16Z 2023-03-11T16:03:16Z 2021 On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. 1726-3255 DOI:10.12958/adm1209 2020 MSC: 16D50. https://nasplib.isofts.kiev.ua/handle/123456789/188708 For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On (co)pure Baer injective modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On (co)pure Baer injective modules |
| spellingShingle |
On (co)pure Baer injective modules Hamid, M.F. |
| title_short |
On (co)pure Baer injective modules |
| title_full |
On (co)pure Baer injective modules |
| title_fullStr |
On (co)pure Baer injective modules |
| title_full_unstemmed |
On (co)pure Baer injective modules |
| title_sort |
on (co)pure baer injective modules |
| author |
Hamid, M.F. |
| author_facet |
Hamid, M.F. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188708 |
| citation_txt |
On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT hamidmf oncopurebaerinjectivemodules |
| first_indexed |
2025-11-29T12:24:22Z |
| last_indexed |
2025-11-29T12:24:22Z |
| _version_ |
1850854950839517184 |