Infinite transitivity on the Calogero-Moser space C₂
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188709 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188709 |
|---|---|
| record_format |
dspace |
| spelling |
Kesten, J. Mathers, S. Normatov Z. 2023-03-11T16:07:18Z 2023-03-11T16:07:18Z 2021 Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. 1726-3255 DOI:10.12958/adm1656 2020 MSC: 14R20, 14L30, 14J50. https://nasplib.isofts.kiev.ua/handle/123456789/188709 We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂. The authors are indebted to Farkhod Eshmatov for proposing this problem and giving invaluable suggestions and would like to thank the International Research Experience for Undergraduates, organized through UC Fullerton and the Uzbekistan Academy of Sciences, for making the collaboration and project possible. Kesten and Mathers were supported by NSF Grant 1658672. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Infinite transitivity on the Calogero-Moser space C₂ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Infinite transitivity on the Calogero-Moser space C₂ |
| spellingShingle |
Infinite transitivity on the Calogero-Moser space C₂ Kesten, J. Mathers, S. Normatov Z. |
| title_short |
Infinite transitivity on the Calogero-Moser space C₂ |
| title_full |
Infinite transitivity on the Calogero-Moser space C₂ |
| title_fullStr |
Infinite transitivity on the Calogero-Moser space C₂ |
| title_full_unstemmed |
Infinite transitivity on the Calogero-Moser space C₂ |
| title_sort |
infinite transitivity on the calogero-moser space c₂ |
| author |
Kesten, J. Mathers, S. Normatov Z. |
| author_facet |
Kesten, J. Mathers, S. Normatov Z. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188709 |
| citation_txt |
Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT kestenj infinitetransitivityonthecalogeromoserspacec2 AT matherss infinitetransitivityonthecalogeromoserspacec2 AT normatovz infinitetransitivityonthecalogeromoserspacec2 |
| first_indexed |
2025-12-07T18:52:03Z |
| last_indexed |
2025-12-07T18:52:03Z |
| _version_ |
1850876649529147393 |