Infinite transitivity on the Calogero-Moser space C₂
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2021 |
| Main Authors: | Kesten, J., Mathers, S., Normatov Z. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188709 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
by: Kesten, J., et al.
Published: (2021) -
Infinite transitivity on the Calogero-Moser space \(\mathcal{C}_2\)
by: Kesten, J., et al.
Published: (2021) -
KZ Characteristic Variety as the Zero Set of Classical Calogero-Moser Hamiltonians
by: Mukhin, E., et al.
Published: (2012) -
Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
by: Feigin, M.V.
Published: (2009) -
Rational Calogero-Moser Model: Explicit Form and r-Matrix of the Second Poisson Structure
by: Avan, J., et al.
Published: (2012)