Semi-lattice of varieties of quasigroups with linearity

A σ-parastrophe of a class of quasigroups 𝕬 is a class σ𝕬 of all σ-parastrophes of quasigroups from 𝕬. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Sokhatsky, F.M., Krainichuk, H.V., Sydoruk, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188711
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Semi-lattice of varieties of quasigroups with linearity / F.M. Sokhatsky, H.V. Krainichuk, V.A. Sydoruk // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 261–285. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188711
record_format dspace
spelling Sokhatsky, F.M.
Krainichuk, H.V.
Sydoruk, V.A.
2023-03-11T16:15:09Z
2023-03-11T16:15:09Z
2021
Semi-lattice of varieties of quasigroups with linearity / F.M. Sokhatsky, H.V. Krainichuk, V.A. Sydoruk // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 261–285. — Бібліогр.: 29 назв. — англ.
1726-3255
DOI:10.12958/adm1748
2020 MSC: Primary 20N05, 20N15, 39B52, 08A05; Secondary 05A15, 05B07
https://nasplib.isofts.kiev.ua/handle/123456789/188711
A σ-parastrophe of a class of quasigroups 𝕬 is a class σ𝕬 of all σ-parastrophes of quasigroups from 𝕬. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasi-groups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.
The authors are grateful to the members of Scientific Ukrainian Mathematical School “Multiary Invertible Functions” (SUMS “MIF”) for their helpful discussions on the problem and to the English reviewer V. Obshanska.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Semi-lattice of varieties of quasigroups with linearity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Semi-lattice of varieties of quasigroups with linearity
spellingShingle Semi-lattice of varieties of quasigroups with linearity
Sokhatsky, F.M.
Krainichuk, H.V.
Sydoruk, V.A.
title_short Semi-lattice of varieties of quasigroups with linearity
title_full Semi-lattice of varieties of quasigroups with linearity
title_fullStr Semi-lattice of varieties of quasigroups with linearity
title_full_unstemmed Semi-lattice of varieties of quasigroups with linearity
title_sort semi-lattice of varieties of quasigroups with linearity
author Sokhatsky, F.M.
Krainichuk, H.V.
Sydoruk, V.A.
author_facet Sokhatsky, F.M.
Krainichuk, H.V.
Sydoruk, V.A.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A σ-parastrophe of a class of quasigroups 𝕬 is a class σ𝕬 of all σ-parastrophes of quasigroups from 𝕬. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasi-groups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188711
citation_txt Semi-lattice of varieties of quasigroups with linearity / F.M. Sokhatsky, H.V. Krainichuk, V.A. Sydoruk // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 261–285. — Бібліогр.: 29 назв. — англ.
work_keys_str_mv AT sokhatskyfm semilatticeofvarietiesofquasigroupswithlinearity
AT krainichukhv semilatticeofvarietiesofquasigroupswithlinearity
AT sydorukva semilatticeofvarietiesofquasigroupswithlinearity
first_indexed 2025-12-07T18:01:45Z
last_indexed 2025-12-07T18:01:45Z
_version_ 1850873485374521344