Semisymmetric Zp-covers of the graph C20

A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially v...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2021
Main Authors: Talebi, A.A., Mehdipoor, N.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188712
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188712
record_format dspace
spelling Talebi, A.A.
Mehdipoor, N.
2023-03-11T16:17:37Z
2023-03-11T16:17:37Z
2021
Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ.
1726-3255
DOI:10.12958/adm252
2020 MSC: 05C25, 20b25
https://nasplib.isofts.kiev.ua/handle/123456789/188712
A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric Zp-covers of the C20 graph.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Semisymmetric Zp-covers of the graph C20
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Semisymmetric Zp-covers of the graph C20
spellingShingle Semisymmetric Zp-covers of the graph C20
Talebi, A.A.
Mehdipoor, N.
title_short Semisymmetric Zp-covers of the graph C20
title_full Semisymmetric Zp-covers of the graph C20
title_fullStr Semisymmetric Zp-covers of the graph C20
title_full_unstemmed Semisymmetric Zp-covers of the graph C20
title_sort semisymmetric zp-covers of the graph c20
author Talebi, A.A.
Mehdipoor, N.
author_facet Talebi, A.A.
Mehdipoor, N.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric Zp-covers of the C20 graph.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188712
citation_txt Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT talebiaa semisymmetriczpcoversofthegraphc20
AT mehdipoorn semisymmetriczpcoversofthegraphc20
first_indexed 2025-12-07T20:48:25Z
last_indexed 2025-12-07T20:48:25Z
_version_ 1850883970744451072