Semisymmetric Zp-covers of the graph C20
A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially v...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2021 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188712 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188712 |
|---|---|
| record_format |
dspace |
| spelling |
Talebi, A.A. Mehdipoor, N. 2023-03-11T16:17:37Z 2023-03-11T16:17:37Z 2021 Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ. 1726-3255 DOI:10.12958/adm252 2020 MSC: 05C25, 20b25 https://nasplib.isofts.kiev.ua/handle/123456789/188712 A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric Zp-covers of the C20 graph. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Semisymmetric Zp-covers of the graph C20 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Semisymmetric Zp-covers of the graph C20 |
| spellingShingle |
Semisymmetric Zp-covers of the graph C20 Talebi, A.A. Mehdipoor, N. |
| title_short |
Semisymmetric Zp-covers of the graph C20 |
| title_full |
Semisymmetric Zp-covers of the graph C20 |
| title_fullStr |
Semisymmetric Zp-covers of the graph C20 |
| title_full_unstemmed |
Semisymmetric Zp-covers of the graph C20 |
| title_sort |
semisymmetric zp-covers of the graph c20 |
| author |
Talebi, A.A. Mehdipoor, N. |
| author_facet |
Talebi, A.A. Mehdipoor, N. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A graph X is said to be G-semisymmetric if it is regular and there exists a subgroup G of A := Aut(X) acting transitively on its edge set but not on its vertex set. In the case of G = A, we call X a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric Zp-covers of the C20 graph.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188712 |
| citation_txt |
Semisymmetric Zp-covers of the graph C20 / A.A. Talebi, N. Mehdipoor // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 286–301. — Бібліогр.: 25 назв. — англ. |
| work_keys_str_mv |
AT talebiaa semisymmetriczpcoversofthegraphc20 AT mehdipoorn semisymmetriczpcoversofthegraphc20 |
| first_indexed |
2025-12-07T20:48:25Z |
| last_indexed |
2025-12-07T20:48:25Z |
| _version_ |
1850883970744451072 |