The center of the wreath product of symmetric group algebras

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Far...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
1. Verfasser: Tout, O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188713
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188713
record_format dspace
spelling Tout, O.
2023-03-11T16:20:08Z
2023-03-11T16:20:08Z
2021
The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ.
1726-3255
DOI:10.12958/adm1338
2020 MSC: 05E10, 05E16, 20C30.
https://nasplib.isofts.kiev.ua/handle/123456789/188713
We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
This research is supported by Narodowe Centrum Nauki, grant number 2017/26/A/ST1/00189. The author is grateful to the Mathematical Institute of the Polish Academy of Sciences branch in Toruń for their hospitality and financial support during the time where this work was accomplished. Especially, he would like to thank Prof. Piotr Śniady for many interesting discussions about the topics presented in this paper.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
The center of the wreath product of symmetric group algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The center of the wreath product of symmetric group algebras
spellingShingle The center of the wreath product of symmetric group algebras
Tout, O.
title_short The center of the wreath product of symmetric group algebras
title_full The center of the wreath product of symmetric group algebras
title_fullStr The center of the wreath product of symmetric group algebras
title_full_unstemmed The center of the wreath product of symmetric group algebras
title_sort center of the wreath product of symmetric group algebras
author Tout, O.
author_facet Tout, O.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188713
citation_txt The center of the wreath product of symmetric group algebras / O. Tout // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 302–322. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT touto thecenterofthewreathproductofsymmetricgroupalgebras
AT touto centerofthewreathproductofsymmetricgroupalgebras
first_indexed 2025-12-07T15:15:00Z
last_indexed 2025-12-07T15:15:00Z
_version_ 1850862993762418688