A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra

We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Choi, C., Kim, S., Seo, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188715
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra / C. Choi, S. Kim, H. Seo // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 9–32. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grLn, we give some explicit constructions of weight multiplicity-free irreducible representations of gl(n).