A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra

We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizin...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2021
Main Authors: Choi, C., Kim, S., Seo, H.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188715
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra / C. Choi, S. Kim, H. Seo // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 9–32. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188715
record_format dspace
spelling Choi, C.
Kim, S.
Seo, H.
2023-03-12T18:02:44Z
2023-03-12T18:02:44Z
2021
A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra / C. Choi, S. Kim, H. Seo // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 9–32. — Бібліогр.: 6 назв. — англ.
1726-3255
DOI:10.12958/adm1304
2020 MSC: 16S34, 16W70, 17B10, 17B45.
https://nasplib.isofts.kiev.ua/handle/123456789/188715
We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grLn, we give some explicit constructions of weight multiplicity-free irreducible representations of gl(n).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
spellingShingle A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
Choi, C.
Kim, S.
Seo, H.
title_short A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
title_full A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
title_fullStr A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
title_full_unstemmed A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
title_sort filtration on the ring of laurent polynomials and representations of the general linear lie algebra
author Choi, C.
Kim, S.
Seo, H.
author_facet Choi, C.
Kim, S.
Seo, H.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grLn, we give some explicit constructions of weight multiplicity-free irreducible representations of gl(n).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188715
citation_txt A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra / C. Choi, S. Kim, H. Seo // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 9–32. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT choic afiltrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
AT kims afiltrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
AT seoh afiltrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
AT choic filtrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
AT kims filtrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
AT seoh filtrationontheringoflaurentpolynomialsandrepresentationsofthegenerallinearliealgebra
first_indexed 2025-11-28T05:51:42Z
last_indexed 2025-11-28T05:51:42Z
_version_ 1850853421663387648