A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
We first present a filtration on the ring Ln of Laurent polynomials such that the direct sum decomposition of its associated graded ring grLn agrees with the direct sum decomposition of grLn, as a module over the complex general linear Lie algebra gl(n), into its simple submodules. Next, generalizin...
Saved in:
| Date: | 2021 |
|---|---|
| Main Authors: | Choi, C., Kim, S., Seo, H. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2021
|
| Series: | Algebra and Discrete Mathematics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188715 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra / C. Choi, S. Kim, H. Seo // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 9–32. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
Leibniz algebras with absolute maximal Lie subalgebras
by: Biyogmam, G. R., et al.
Published: (2020)
by: Biyogmam, G. R., et al.
Published: (2020)
Similar Items
-
A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra
by: Choi, C., et al.
Published: (2021) -
Lie algebras associated with modules over polynomial rings
by: A. P. Petravchuk, et al.
Published: (2017) -
Solvable Lie algebras of derivations of polynomial rings in three variables
by: Ie. Yu. Chapovskyi, et al.
Published: (2018) -
Solvable Lie algebras of derivations of polynomial rings in three variables
by: Chapovskyi, Ie. Yu.; Чаповський І. Є.; Київський національний університет ім. Тараса Шевченка, Київ, et al.
Published: (2018) -
Triangular form of Laurent polynomial matrices and their factorization
by: M. I. Kuchma, et al.
Published: (2022)