Common neighborhood spectrum of commuting graphs of finite groups

The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Fasfous, W.N.T., Sharafdini, R., Nath, R.K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188716
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188716
record_format dspace
spelling Fasfous, W.N.T.
Sharafdini, R.
Nath, R.K.
2023-03-12T18:07:56Z
2023-03-12T18:07:56Z
2021
Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ.
1726-3255
DOI:10.12958/adm1332
2020 MSC: 20D99, 05C50, 15A18, 05C25
https://nasplib.isofts.kiev.ua/handle/123456789/188716
The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is thankful to Indian Council for Cultural Relations for the ICCR Scholarship.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Common neighborhood spectrum of commuting graphs of finite groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Common neighborhood spectrum of commuting graphs of finite groups
spellingShingle Common neighborhood spectrum of commuting graphs of finite groups
Fasfous, W.N.T.
Sharafdini, R.
Nath, R.K.
title_short Common neighborhood spectrum of commuting graphs of finite groups
title_full Common neighborhood spectrum of commuting graphs of finite groups
title_fullStr Common neighborhood spectrum of commuting graphs of finite groups
title_full_unstemmed Common neighborhood spectrum of commuting graphs of finite groups
title_sort common neighborhood spectrum of commuting graphs of finite groups
author Fasfous, W.N.T.
Sharafdini, R.
Nath, R.K.
author_facet Fasfous, W.N.T.
Sharafdini, R.
Nath, R.K.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188716
citation_txt Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT fasfouswnt commonneighborhoodspectrumofcommutinggraphsoffinitegroups
AT sharafdinir commonneighborhoodspectrumofcommutinggraphsoffinitegroups
AT nathrk commonneighborhoodspectrumofcommutinggraphsoffinitegroups
first_indexed 2025-12-01T12:13:50Z
last_indexed 2025-12-01T12:13:50Z
_version_ 1850860209826693120