Common neighborhood spectrum of commuting graphs of finite groups
The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of s...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2021 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/188716 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188716 |
|---|---|
| record_format |
dspace |
| spelling |
Fasfous, W.N.T. Sharafdini, R. Nath, R.K. 2023-03-12T18:07:56Z 2023-03-12T18:07:56Z 2021 Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ. 1726-3255 DOI:10.12958/adm1332 2020 MSC: 20D99, 05C50, 15A18, 05C25 https://nasplib.isofts.kiev.ua/handle/123456789/188716 The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is thankful to Indian Council for Cultural Relations for the ICCR Scholarship. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Common neighborhood spectrum of commuting graphs of finite groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Common neighborhood spectrum of commuting graphs of finite groups |
| spellingShingle |
Common neighborhood spectrum of commuting graphs of finite groups Fasfous, W.N.T. Sharafdini, R. Nath, R.K. |
| title_short |
Common neighborhood spectrum of commuting graphs of finite groups |
| title_full |
Common neighborhood spectrum of commuting graphs of finite groups |
| title_fullStr |
Common neighborhood spectrum of commuting graphs of finite groups |
| title_full_unstemmed |
Common neighborhood spectrum of commuting graphs of finite groups |
| title_sort |
common neighborhood spectrum of commuting graphs of finite groups |
| author |
Fasfous, W.N.T. Sharafdini, R. Nath, R.K. |
| author_facet |
Fasfous, W.N.T. Sharafdini, R. Nath, R.K. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The commuting graph of a finite non-abelian group G with center Z(G), denoted by Гc(G), is a simple undirected graph whose vertex set is G\ Z(G), and two distinct vertices x and y are adjacent if and only if xy = yx. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188716 |
| citation_txt |
Common neighborhood spectrum of commuting graphs of finite groups / W.N.T. Fasfous, R. Sharafdini, R.K. Nath // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 33–48. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT fasfouswnt commonneighborhoodspectrumofcommutinggraphsoffinitegroups AT sharafdinir commonneighborhoodspectrumofcommutinggraphsoffinitegroups AT nathrk commonneighborhoodspectrumofcommutinggraphsoffinitegroups |
| first_indexed |
2025-12-01T12:13:50Z |
| last_indexed |
2025-12-01T12:13:50Z |
| _version_ |
1850860209826693120 |