Cancellation ideals of a ring extension
We study properties of cancellation ideals of ring extensions. Let R ⊆ S be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension R ⊆ S if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C. We show...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2021 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/188722 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Cancellation ideals of a ring extension / S. Tchamna // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 138–146. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-188722 |
|---|---|
| record_format |
dspace |
| spelling |
Tchamna, S. 2023-03-12T18:34:08Z 2023-03-12T18:34:08Z 2021 Cancellation ideals of a ring extension / S. Tchamna // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 138–146. — Бібліогр.: 7 назв. — англ. 1726-3255 DOI:10.12958/adm1424 2020 MSC: 13A15, 13A18, 13B02 https://nasplib.isofts.kiev.ua/handle/123456789/188722 We study properties of cancellation ideals of ring extensions. Let R ⊆ S be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension R ⊆ S if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C. We show that a finitely generated ideal I is a cancellation ideal of the ring extension R ⊆ S if and only if I is S-invertible. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Cancellation ideals of a ring extension Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Cancellation ideals of a ring extension |
| spellingShingle |
Cancellation ideals of a ring extension Tchamna, S. |
| title_short |
Cancellation ideals of a ring extension |
| title_full |
Cancellation ideals of a ring extension |
| title_fullStr |
Cancellation ideals of a ring extension |
| title_full_unstemmed |
Cancellation ideals of a ring extension |
| title_sort |
cancellation ideals of a ring extension |
| author |
Tchamna, S. |
| author_facet |
Tchamna, S. |
| publishDate |
2021 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We study properties of cancellation ideals of ring extensions. Let R ⊆ S be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension R ⊆ S if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C. We show that a finitely generated ideal I is a cancellation ideal of the ring extension R ⊆ S if and only if I is S-invertible.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/188722 |
| citation_txt |
Cancellation ideals of a ring extension / S. Tchamna // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 1. — С. 138–146. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT tchamnas cancellationidealsofaringextension |
| first_indexed |
2025-11-27T17:25:12Z |
| last_indexed |
2025-11-27T17:25:12Z |
| _version_ |
1850852597419737088 |