On the nilpotence of the prime radical in module categories

For M ∈ R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ (M) = Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditi...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2021
Main Authors: Arellano, C., Castro, J., Ríos, J.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188745
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the nilpotence of the prime radical in module categories / C. Arellano, J. Castro, J. Ríos // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 161-184. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188745
record_format dspace
spelling Arellano, C.
Castro, J.
Ríos, J.
2023-03-14T16:40:18Z
2023-03-14T16:40:18Z
2021
On the nilpotence of the prime radical in module categories / C. Arellano, J. Castro, J. Ríos // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 161-184. — Бібліогр.: 18 назв. — англ.
1726-3255
DOI:10.12958/adm1634
2020 MSC: 06F25, 16S90, 16D50, 16P50, 16P70
https://nasplib.isofts.kiev.ua/handle/123456789/188745
For M ∈ R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ (M) = Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ -nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ ≠ τ is FIS-invariant torsion theory such that M has τ -Krull dimension, then Nτ is τ -nilpotent.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the nilpotence of the prime radical in module categories
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the nilpotence of the prime radical in module categories
spellingShingle On the nilpotence of the prime radical in module categories
Arellano, C.
Castro, J.
Ríos, J.
title_short On the nilpotence of the prime radical in module categories
title_full On the nilpotence of the prime radical in module categories
title_fullStr On the nilpotence of the prime radical in module categories
title_full_unstemmed On the nilpotence of the prime radical in module categories
title_sort on the nilpotence of the prime radical in module categories
author Arellano, C.
Castro, J.
Ríos, J.
author_facet Arellano, C.
Castro, J.
Ríos, J.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description For M ∈ R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ (M) = Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditions for the τ -nilpotence of Nτ(M). We prove that if M is a finitely generated R-module, progenerator in σ[M] and χ ≠ τ is FIS-invariant torsion theory such that M has τ -Krull dimension, then Nτ is τ -nilpotent.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188745
citation_txt On the nilpotence of the prime radical in module categories / C. Arellano, J. Castro, J. Ríos // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 161-184. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT arellanoc onthenilpotenceoftheprimeradicalinmodulecategories
AT castroj onthenilpotenceoftheprimeradicalinmodulecategories
AT riosj onthenilpotenceoftheprimeradicalinmodulecategories
first_indexed 2025-12-07T13:13:07Z
last_indexed 2025-12-07T13:13:07Z
_version_ 1850855326033641472