On the nilpotence of the prime radical in module categories
For M ∈ R-Mod and τ a hereditary torsion theory on the category σ[M] we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of τ-pure prime radical Nτ (M) = Nτ as the intersection of all τ-pure prime submodules of M. We give necessary and sufficient conditi...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2021 |
| Main Authors: | Arellano, C., Castro, J., Ríos, J. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2021
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/188745 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the nilpotence of the prime radical in module categories / C. Arellano, J. Castro, J. Ríos // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 161-184. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the nilpotence of the prime radical in module categories
by: Arellano, C., et al.
Published: (2022) -
Radical functors in the category of modules over different rings
by: Burban, Natalia, et al.
Published: (2018) -
Radical functors in the category of modules over different rings
by: Burban, Natalia, et al.
Published: (2018) -
Radical functors in the category of modules over different rings
by: Burban, N., et al.
Published: (2008) -
T-radical and strongly T-radical supplemented modules
by: B. Koşar, et al.
Published: (2016)