Maximal subgroup growth of a few polycyclic groups

We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let Gk = ⟨x1, x2, . . . , xk | xixjxi⁻¹ for all i < j⟩, so Gk = ℤ⋊(ℤ⋊(ℤ⋊• • •⋊ℤ)). Then for all integers k ≥ 2, we calculate mn(Gk), the number of maximal subgroups of Gk of index n, exactly. Also, for infinitely...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2021
Main Authors: Kelley, A., Wolfe, E.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188749
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Maximal subgroup growth of a few polycyclic groups / A. Kelley, E. Wolfe // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 226-235. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188749
record_format dspace
spelling Kelley, A.
Wolfe, E.
2023-03-14T16:56:22Z
2023-03-14T16:56:22Z
2021
Maximal subgroup growth of a few polycyclic groups / A. Kelley, E. Wolfe // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 226-235. — Бібліогр.: 9 назв. — англ.
1726-3255
DOI:10.12958/adm1506
2020 MSC: 20E07.
https://nasplib.isofts.kiev.ua/handle/123456789/188749
We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let Gk = ⟨x1, x2, . . . , xk | xixjxi⁻¹ for all i < j⟩, so Gk = ℤ⋊(ℤ⋊(ℤ⋊• • •⋊ℤ)). Then for all integers k ≥ 2, we calculate mn(Gk), the number of maximal subgroups of Gk of index n, exactly. Also, for infinitely many groups Hk of the form ℤ² ⋊ G₂, we calculate mn(Hk) exactly.
This paper was done with the support of the Student Collaborative Research grant at Colorado College. We would like to thank the referee for a detailed referee report that helped us improve this paper.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Maximal subgroup growth of a few polycyclic groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Maximal subgroup growth of a few polycyclic groups
spellingShingle Maximal subgroup growth of a few polycyclic groups
Kelley, A.
Wolfe, E.
title_short Maximal subgroup growth of a few polycyclic groups
title_full Maximal subgroup growth of a few polycyclic groups
title_fullStr Maximal subgroup growth of a few polycyclic groups
title_full_unstemmed Maximal subgroup growth of a few polycyclic groups
title_sort maximal subgroup growth of a few polycyclic groups
author Kelley, A.
Wolfe, E.
author_facet Kelley, A.
Wolfe, E.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let Gk = ⟨x1, x2, . . . , xk | xixjxi⁻¹ for all i < j⟩, so Gk = ℤ⋊(ℤ⋊(ℤ⋊• • •⋊ℤ)). Then for all integers k ≥ 2, we calculate mn(Gk), the number of maximal subgroups of Gk of index n, exactly. Also, for infinitely many groups Hk of the form ℤ² ⋊ G₂, we calculate mn(Hk) exactly.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188749
citation_txt Maximal subgroup growth of a few polycyclic groups / A. Kelley, E. Wolfe // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 226-235. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT kelleya maximalsubgroupgrowthofafewpolycyclicgroups
AT wolfee maximalsubgroupgrowthofafewpolycyclicgroups
first_indexed 2025-11-30T16:16:16Z
last_indexed 2025-11-30T16:16:16Z
_version_ 1850858122476781568