Homotopy equivalence of normalized and unnormalized complexes, revisited

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the un...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2021
Main Authors: Lyubashenko, V., Matsui, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/188752
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188752
record_format dspace
spelling Lyubashenko, V.
Matsui, A.
2023-03-14T17:07:32Z
2023-03-14T17:07:32Z
2021
Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ.
1726-3255
DOI:10.12958/adm1879
2020 MSC: 18G31, 18N50
https://nasplib.isofts.kiev.ua/handle/123456789/188752
We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Homotopy equivalence of normalized and unnormalized complexes, revisited
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Homotopy equivalence of normalized and unnormalized complexes, revisited
spellingShingle Homotopy equivalence of normalized and unnormalized complexes, revisited
Lyubashenko, V.
Matsui, A.
title_short Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full Homotopy equivalence of normalized and unnormalized complexes, revisited
title_fullStr Homotopy equivalence of normalized and unnormalized complexes, revisited
title_full_unstemmed Homotopy equivalence of normalized and unnormalized complexes, revisited
title_sort homotopy equivalence of normalized and unnormalized complexes, revisited
author Lyubashenko, V.
Matsui, A.
author_facet Lyubashenko, V.
Matsui, A.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the DoldśKan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188752
citation_txt Homotopy equivalence of normalized and unnormalized complexes, revisited / V. Lyubashenko, A. Matsui // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 253-266. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT lyubashenkov homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
AT matsuia homotopyequivalenceofnormalizedandunnormalizedcomplexesrevisited
first_indexed 2025-12-01T10:17:05Z
last_indexed 2025-12-01T10:17:05Z
_version_ 1850859907101753344