A study on dual square free modules

Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2021
Hauptverfasser: Medina-Bárcenas, M., Keskin Tütüncü, D., Kuratomi, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2021
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/188753
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-188753
record_format dspace
spelling Medina-Bárcenas, M.
Keskin Tütüncü, D.
Kuratomi, Y.
2023-03-14T17:10:39Z
2023-03-14T17:10:39Z
2021
A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ.
1726-3255
DOI:10.12958/adm1512
2020 MSC: 16D40, 16D70
https://nasplib.isofts.kiev.ua/handle/123456789/188753
Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free for all i ∈ I and, Mi and ⊕ j̸≠i Mj are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If EndR(M) is right dual square free, then M is dual square free. In addition, if M is finitely generated, then EndR(M) is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A study on dual square free modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A study on dual square free modules
spellingShingle A study on dual square free modules
Medina-Bárcenas, M.
Keskin Tütüncü, D.
Kuratomi, Y.
title_short A study on dual square free modules
title_full A study on dual square free modules
title_fullStr A study on dual square free modules
title_full_unstemmed A study on dual square free modules
title_sort study on dual square free modules
author Medina-Bárcenas, M.
Keskin Tütüncü, D.
Kuratomi, Y.
author_facet Medina-Bárcenas, M.
Keskin Tütüncü, D.
Kuratomi, Y.
publishDate 2021
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free for all i ∈ I and, Mi and ⊕ j̸≠i Mj are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If EndR(M) is right dual square free, then M is dual square free. In addition, if M is finitely generated, then EndR(M) is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/188753
citation_txt A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT medinabarcenasm astudyondualsquarefreemodules
AT keskintutuncud astudyondualsquarefreemodules
AT kuratomiy astudyondualsquarefreemodules
AT medinabarcenasm studyondualsquarefreemodules
AT keskintutuncud studyondualsquarefreemodules
AT kuratomiy studyondualsquarefreemodules
first_indexed 2025-11-28T10:01:30Z
last_indexed 2025-11-28T10:01:30Z
_version_ 1850853507580559360