Теория и методы евклидовой комбинаторной оптимизации: современное состояние и перспективы

Рассмотрен класс задач евклидовой комбинаторной оптимизации как задач дискретной оптимизации на множестве комбинаторных конфигураций, отображенном в арифметическое евклидово пространство. Дан обзор современных методов евклидовой комбинаторной оптимизации. Описаны свойства соответствующих образов ком...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2020
Hauptverfasser: Стоян, Ю.Г., Яковлев, С.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/190377
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Теория и методы евклидовой комбинаторной оптимизации: современное состояние и перспективы / Ю.Г. Стоян, С.В. Яковлев // Кибернетика и системный анализ. — 2020. — Т. 56, № 3. — С. 30–46. — Бібліогр.: 119 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассмотрен класс задач евклидовой комбинаторной оптимизации как задач дискретной оптимизации на множестве комбинаторных конфигураций, отображенном в арифметическое евклидово пространство. Дан обзор современных методов евклидовой комбинаторной оптимизации. Описаны свойства соответствующих образов комбинаторных множеств. Предложена теория непрерывных функциональных представлений и выпуклых продолжений для решения указанного класса задач. Отмечены области практического приложения и перспективные направления исследований. Розглянуто клас задач евклідової комбінаторної оптимізації як задач дискретної оптимізації на множині комбінаторних конфігурацій, відображеній в арифметичний евклідів простір. Наведено огляд сучасних методів евклідової комбінаторної оптимізації. Описано властивості відповідних образів комбінаторних множин. Запропоновано теорію неперервних функціональних представлень і опуклих продовжень для розв'язання зазначеного класу задач. Визначено сфери практичного застосування та перспективні напрямки досліджень. Euclidean combinatorial optimization problems are considered as discrete optimization problems on a set of combinatorial configurations mapped into an arithmetic Euclidean space. Modern methods of Euclidean combinatorial optimization are overviewed. The properties of the corresponding images of combinatorial sets are described. A theory of continuous functional representations and convex extensions is proposed for solving this class of problems. Areas of practical application and promising research areas are indicated.
ISSN:1019-5262