Інтегральні оператори, що визначають розв'язок ітерованого рівняння гіперболічного типу

Побудовано інтегральні оператори, що переводять довільні функції в регулярні розв'язки рівняння гіперболічного типу другого і вищих порядків. Розв'язано задачу Коші для рівняння гіперболічного типу четвертого порядку. Використання апарату спеціальних функцій надало змогу одержати зображенн...

Full description

Saved in:
Bibliographic Details
Published in:Кибернетика и системный анализ
Date:2020
Main Authors: Александрович, І.М., Бондар, О.С., Ляшко, Н.І., Ляшко, С.І., Сидоров, М.В.-С.
Format: Article
Language:Ukrainian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/190380
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Інтегральні оператори, що визначають розв'язок ітерованого рівняння гіперболічного типу / І.М. Александрович, О.С. Бондар, Н.І. Ляшко, С.І. Ляшко, М.В.-С. Сидоров // Кибернетика и системный анализ. — 2020. — Т. 56, № 3. — С. 70–79. — Бібліогр.: 14 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Побудовано інтегральні оператори, що переводять довільні функції в регулярні розв'язки рівняння гіперболічного типу другого і вищих порядків. Розв'язано задачу Коші для рівняння гіперболічного типу четвертого порядку. Використання апарату спеціальних функцій надало змогу одержати зображення розв'язків рівнянь у частинних похідних у зручному для дослідження вигляді. Попутно розв'язано інтегральні рівняння типу згортки зі спеціальними функціями в ядрі. Построены интегральные операторы, переводящие произвольные функции в регулярные решения уравнения гиперболического типа второго и высших порядков. Решена задача Коши для уравнения гиперболического типа четвертого порядка. Использование аппарата специальных функций позволило получить представление решений уравнений в частных производных в удобном для исследований виде. Попутно решены интегральные уравнения типа свертки со специальными функциями в ядре. Integral operators that translate arbitrary functions into regular solutions of the hyperbolic equation of the second and higher orders are constructed. The Cauchy problem for the fourth-order hyperbolic equation is solved. The use of the theory of special functions helped us to obtain the image of solutions of partial derivative equations in a form convenient for the analysis. Along the way, solvable integral equations with special functions in the kernel are solved.
ISSN:1019-5262