Проверка случайности расположения битов в локальных участках (0, 1)-последовательности

Установлен явный вид совместного распределения числа 2-цепочек и числа 3-цепочек различных фиксированных вариантов в (0, 1)-последовательности длины n, состоящей из нулей и единиц. Предполагается, что элементы (0, 1)-последовательности - это независимые одинаково распределенные случайные величины. Д...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2020
Hauptverfasser: Масол, В.И., Поперешняк, С.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/190391
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Проверка случайности расположения битов в локальных участках (0, 1)-последовательности / В.И. Масол, С.В. Поперешняк // Кибернетика и системный анализ. — 2020. — Т. 56, № 3. — С. 194–202. — Бібліогр.: 14 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Установлен явный вид совместного распределения числа 2-цепочек и числа 3-цепочек различных фиксированных вариантов в (0, 1)-последовательности длины n, состоящей из нулей и единиц. Предполагается, что элементы (0, 1)-последовательности - это независимые одинаково распределенные случайные величины. Даны таблицы, иллюстрирующие применение установленных формул для (0, 1)-последовательности длины n = 16. Встановлено явний вигляд сумісного розподілу кількості 2-ланцюжків і кількості 3-ланцюжків різних фіксованих варіантів в (0, 1)-послідовності довжини n, що складається з нулів і одиниць. Вважається, що елементи (0, 1)-послідовності це незалежні однаково розподілені випадкові величини. Наведено таблиці, що ілюструють застосування встановлених формул для (0, 1)-послідовності довжини n = 16. An explicit form of the joint distribution of the number of 2-chains and the number of 3-chains of various fixed variants in a (0, 1)-sequence of length n consisting of zeros and ones is established. It is assumed that the elements of (0, 1)-sequences are independent identically distributed random variables. Tables illustrating the application of the established formulas for a (0, 1)-sequence of length n = 16 are given.
ISSN:1019-5262