Точные оценки вероятности попадания неотрицательной унимодальной случайной величины в специальные интервалы при неполной информации
Найдены точные нижние оценки вероятностей попадания неотрицательных унимодальных случайных величин μ в интервалы m - ασμ, m + ασμ, где мода m, которая совпадает с первым моментом случайной величины μ, меньше, чем среднее квадратическое отклонением m < σμ. Параметр α удовлетворяет неравенствам 0...
Збережено в:
| Опубліковано в: : | Кібернетика та системний аналіз |
|---|---|
| Дата: | 2021 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2021
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/190652 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Точные оценки вероятности попадания неотрицательной унимодальной случайной величины в специальные интервалы при неполной информации / Л.С. Стойкова // Кібернетика та системний аналіз. — 2021. — Т. 57, № 2. — С. 110–114. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Найдены точные нижние оценки вероятностей попадания неотрицательных унимодальных случайных величин μ в интервалы m - ασμ, m + ασμ, где мода m, которая совпадает с первым моментом случайной величины μ, меньше, чем среднее квадратическое отклонением m < σμ. Параметр α удовлетворяет неравенствам 0 < α < m/σμ < 1. Этот результат может быть применен при расчете вероятности попадания снаряда в полосу при прицельной стрельбе.
Знайдено точні нижні оцінки ймовірності попадання невід’ємної унімодальної випадкової величини μ в інтервали (m - ασμ, m + ασμ), де мода m збігається з першим моментом випадкової величини μ і менше, ніж середнє квадратичне відхилення: m < σμ. Параметр α задовольняє нерівностям 0 < α < m/σμ < 1. Цей результат можна застосувати для розрахунку ймовірності попадання снаряда в смугу під час прицільної стрільби.
Exact lower estimations are found for the probability that non-negative unimodal random variable μ gets in the intervals (m - ασμ, m + ασμ) where the mode m coincides with fixed first moment of random variable μ, σμ is standard deviation and m < σμ. The parameter α satisfies the inequalities 0 < α < m/σμ < 1. The results of this study may be useful in evaluating the probability of hitting the projectile zone when aimed shooting.
|
|---|---|
| ISSN: | 1019-5262 |