Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel
The swelling behavior of 18Cr10NiTi austenitic stainless steel irradiated with energetic Ar-ions in the dose range of 40…105 displacements per atom (dpa) with simultaneously implanted argon to the levels of 0.08…6.3 at.% at temperatures of 550…700 °C was investigated. Transmission electron microscop...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194359 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel / G.D. Tolstolutskaya, S.A. Karpov, A.S. Kalchenko, I.E. Kopanets, A.V. Nikitin, V.N. Voyevodin // Problems of atomic science and tecnology. — 2020. — № 2. — С. 27-32. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194359 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1943592025-02-23T17:55:10Z Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel Вплив опромінення іонами аргону на утворення і розвиток пористості в аустенітній сталі Х18Н10Т Влияние облучения ионами аргона на образование и развитие пористости в аустенитной стали Х18Н10Т Tolstolutskaya, G.D. Karpov, S.A. Kalchenko, A.S. Kopanets, I.E. Nikitin, A.V. Voyevodin, V.N. Physics of radiation damages and effects in solids The swelling behavior of 18Cr10NiTi austenitic stainless steel irradiated with energetic Ar-ions in the dose range of 40…105 displacements per atom (dpa) with simultaneously implanted argon to the levels of 0.08…6.3 at.% at temperatures of 550…700 °C was investigated. Transmission electron microscopy (TEM) has been used to study the microstructure evolution and to determine the dependence of swelling on the damage and Ar concentration. It is shown that the highest density and average size of the cavities was observed in the region of the calculated peak damage and Ar concentration. Argon was found to promote cavity swelling at lower temperature. At simultaneous creation of defects and argon implantation it was found a shift of swelling curve to higher temperatures compared to metallic-ion irradiation. The cavity swelling behavior of an austenitic 18Cr10NiTi steel irradiated with energetic argon ions are compared with those resulting from helium implantation. Досліджено поведінку розпухання аустенітної нержавіючої сталі 18Cr10NiTi, опроміненої енергетичними іонами Ar в діапазоні доз 40…105 зсувів на атом (зна) при одночасній імплантації аргону до рівнів 0,08…6,3 ат.% при температурі 550….700 °С. Просвічувальна електронна мікроскопія (ПЕМ) була використана для вивчення еволюції мікроструктури та визначення залежності розпухання від дози і концентрації Ar. Показано, що найбільша щільність і розмір порожнин спостерігаються в області розрахункового піку дефектів і концентрації Ar. Було виявлено, що аргон сприяє розпуханню при більш низькій температурі. При одночасному створенні дефектів і імплантації аргону було виявлено зсув кривої розпухання в сторону більш високих температур у порівнянні з опроміненням іонами металів. Поведінка розпухання аустенітної сталі 18Cr10NiTi, опроміненої енергетичними іонами аргону, порівнюється з такою у разі імплантації гелію Исследовано поведение распухания аустенитной нержавеющей стали 18Cr10NiTi, облученной энергетичными ионами Ar в диапазоне доз 40…105 смещений на атом (сна) при одновременной имплантации аргона до уровней 0,08…6,3 ат.% при температуре 550…700 °С. Просвечивающая электронная микроскопия (ПЭМ) была использована для изучения эволюции микроструктуры и определения зависимости распухания от дозы и концентрации Ar. Показано, что наибольшая плотность и размер полостей наблюдаются в области расчетного пика дефектов и концентрации Ar. Было обнаружено, что аргон способствует распуханию при более низкой температуре. При одновременном создании дефектов и имплантации аргона было обнаружено смещение кривой распухания в сторону более высоких температур по сравнению с облучением ионами металлов. Поведение распухания аустенитной стали 18Cr10NiTi, облученной энергетичными ионами аргона, сравнивается с таковым в случае имплантации гелия. 2020 Article Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel / G.D. Tolstolutskaya, S.A. Karpov, A.S. Kalchenko, I.E. Kopanets, A.V. Nikitin, V.N. Voyevodin // Problems of atomic science and tecnology. — 2020. — № 2. — С. 27-32. — Бібліогр.: 21 назв. — англ. 1562-6016 PACS: 52.40Hf, 28.52Fa, 68.49Sf, 79.20Rf https://nasplib.isofts.kiev.ua/handle/123456789/194359 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
| spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Tolstolutskaya, G.D. Karpov, S.A. Kalchenko, A.S. Kopanets, I.E. Nikitin, A.V. Voyevodin, V.N. Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel Вопросы атомной науки и техники |
| description |
The swelling behavior of 18Cr10NiTi austenitic stainless steel irradiated with energetic Ar-ions in the dose range of 40…105 displacements per atom (dpa) with simultaneously implanted argon to the levels of 0.08…6.3 at.% at temperatures of 550…700 °C was investigated. Transmission electron microscopy (TEM) has been used to study the microstructure evolution and to determine the dependence of swelling on the damage and Ar concentration. It is shown that the highest density and average size of the cavities was observed in the region of the calculated peak damage and Ar concentration. Argon was found to promote cavity swelling at lower temperature. At simultaneous creation of defects and argon implantation it was found a shift of swelling curve to higher temperatures compared to metallic-ion irradiation. The cavity swelling behavior of an austenitic 18Cr10NiTi steel irradiated with energetic argon ions are compared with those resulting from helium implantation. |
| format |
Article |
| author |
Tolstolutskaya, G.D. Karpov, S.A. Kalchenko, A.S. Kopanets, I.E. Nikitin, A.V. Voyevodin, V.N. |
| author_facet |
Tolstolutskaya, G.D. Karpov, S.A. Kalchenko, A.S. Kopanets, I.E. Nikitin, A.V. Voyevodin, V.N. |
| author_sort |
Tolstolutskaya, G.D. |
| title |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel |
| title_short |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel |
| title_full |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel |
| title_fullStr |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel |
| title_full_unstemmed |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel |
| title_sort |
effect of argon-ion irradiation on cavity formation and evolution in 18cr10niti austenitic steel |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2020 |
| topic_facet |
Physics of radiation damages and effects in solids |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194359 |
| citation_txt |
Effect of argon-ion irradiation on cavity formation and evolution in 18Cr10NiTi austenitic steel / G.D. Tolstolutskaya, S.A. Karpov, A.S. Kalchenko, I.E. Kopanets, A.V. Nikitin, V.N. Voyevodin // Problems of atomic science and tecnology. — 2020. — № 2. — С. 27-32. — Бібліогр.: 21 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT tolstolutskayagd effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT karpovsa effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT kalchenkoas effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT kopanetsie effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT nikitinav effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT voyevodinvn effectofargonionirradiationoncavityformationandevolutionin18cr10nitiausteniticsteel AT tolstolutskayagd vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT karpovsa vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT kalchenkoas vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT kopanetsie vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT nikitinav vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT voyevodinvn vplivopromínennâíonamiargonunautvorennâírozvitokporistostívaustenítníjstalíh18n10t AT tolstolutskayagd vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t AT karpovsa vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t AT kalchenkoas vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t AT kopanetsie vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t AT nikitinav vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t AT voyevodinvn vliânieoblučeniâionamiargonanaobrazovanieirazvitieporistostivaustenitnojstalih18n10t |
| first_indexed |
2025-11-24T05:08:17Z |
| last_indexed |
2025-11-24T05:08:17Z |
| _version_ |
1849647061921693696 |
| fulltext |
ISSN 1562-6016. PASТ. 2020. №2(126), p. 27-32.
EFFECT OF ARGON-ION IRRADIATION ON CAVITY FORMATION
AND EVOLUTION IN 18Cr10NiTi AUSTENITIC STEEL
G.D. Tolstolutskaya
1
, S.A. Karpov
1
, A.S. Kalchenko
1
, I.E. Kopanets
1
, A.V. Nikitin
1
,
and V.N. Voyevodin
1,2
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
The swelling behavior of 18Cr10NiTi austenitic stainless steel irradiated with energetic Ar-ions in the dose range
of 40…105 displacements per atom (dpa) with simultaneously implanted argon to the levels of 0.08…6.3 at.% at
temperatures of 550…700 ºC was investigated. Transmission electron microscopy (TEM) has been used to study the
microstructure evolution and to determine the dependence of swelling on the damage and Ar concentration. It is
shown that the highest density and average size of the cavities was observed in the region of the calculated peak
damage and Ar concentration. Argon was found to promote cavity swelling at lower temperature. At simultaneous
creation of defects and argon implantation it was found a shift of swelling curve to higher temperatures compared to
metallic-ion irradiation. The cavity swelling behavior of an austenitic 18Cr10NiTi steel irradiated with energetic
argon ions are compared with those resulting from helium implantation.
PACS: 52.40Hf, 28.52Fa, 68.49Sf, 79.20Rf
INTRODUCTION
The effect of a combination of displacement damage
and helium, produced by high energy neutrons, on
mechanical properties and dimensional stability of
structural materials is one of the key issues in the
development of nuclear power. In particular, next
generation fast and fusion reactors are estimated to
reach extreme doses of displacements per atom (dpa)
and transmuting He [1]. Depending on the neutron
spectrum and fluence, helium is produced in materials
by transmutation reactions in amounts up to thousands
of atomic parts per million (appm). Previous studies
have demonstrated that helium plays a strong role in the
development of the irradiated microstructure with
modifications to cavities, dislocations, and secondary
phases.
It is shown that the swelling behavior under ion
irradiation is influenced by the mode of helium injection
[2]. A study by Farrell et al. [3] examined variation in
void behavior between pre-injected, single beam
irradiation, and co-injected irradiation of Fe–Cr–Ni
alloy. They found that in the dual beam case swelling an
order of magnitude more than the pre-implanted
irradiation (8% versus 0.3…0.7%). The resulted void
microstructure is also varied between pre injected and
dual beam. The voids in the pre-implanted samples were
much smaller than those in the dual beam irradiation
and also were at a higher concentration.
In [4] it was found that the addition of helium can
promote the shift of the peak swelling rate location by
~ 40…70 ºC higher from the temperature with no
helium additions. Helium affected void nucleation by
decreasing the time to appearance of visible voids. The
simultaneous helium injection shifts the temperature of
the onset of swelling to the region of low temperatures.
Despite a large amount of data, the precise mechanism
of helium influence on void nucleation and growth
behavior is still not known for candidate structural
materials including the austenitic, ferritic and ferritic-
martensitic alloys for Gen IV reactors, fusion and
accelerator-driven spallation (ADS) devices [5]. Further
research needed to solve the fundamental overriding
questions about He and dpa effects and their
synergisms.
There are several methodological approaches in the
studying of the helium effect on the development of
microstructure. In Ref. [6, 7] it was demonstrated that in
situ He implantation in mixed spectrum fission reactor
irradiations provides a very suitable approach to
assessing the effects of He-dpa synergisms. However,
because the typical water-cooled test reactors have a
low accumulative neutron dose, 1…10 dpa/year, the ion
irradiation experiments using light and heavy ion beams
have been applied as surrogates for reactor irradiation
with good success [8, 9]. Ion irradiation provides a
possibility to investigate the swelling behavior at higher
doses and to determine the void behavior as a function
of temperature.
To study the effects of a combination of large levels
of helium and displacement damage often use dual ion
beam irradiations by means of two accelerators [10, 11.
In contrast, Mazey et al. [12] have established that by a
reasonable choice of e/m ratio and ion mixture at the ion
source, a mixed beam of high energy neon and nickel
ions could be produced and used for simulation tests of
bubble and void formation and general radiation
damage studies. In this case, neon is used as an
analogue for helium.
Another approach is to use inert gases Ne, Ar, and
Kr with a larger atomic mass than helium and this
results in greater energy transfer during collisions and
thus a larger atomic displacement rate of target atoms
[13].
Helium, neon and argon have been compared in
terms of cavity nucleation during 1 MeV electron
irradiation of a Nimonic PEl6 alloy in HVEM [12].
These results and results for 316 stainless steel [14]
have indicated that neon irradiation produces voids with
sizes and densities similar to that of helium.
The objective of this paper is to determine the effect
of implanted argon on swelling of 18Cr10NiTi
austenitic stainless steel. The focus is on how the
resulting cavity influenced by the irradiation variables,
including, displacements per atom, Ar concentration and
irradiation temperature, as well as comparison the
swelling behavior with those resulting from helium
implantation.
1. MATERIAL AND METHODS
Samples of 18Cr10NiTi austenitic stainless steel for
TEM studies were prepared as disks of 3 mm in
diameter. Thin foils were obtained by mechanical
thinning of the disks down to 130 µm followed by
electropolishing and short-term annealing. To remove a
specified depth layer of material from irradiated side of
the sample the electro-pulse technique was used [15].
Microstructural and swelling data were extracted
using conventional techniques conducted on JEM-
100CX and JEM-2100 transmission electron
microscopes (TEM), employing standard bright-field
techniques. Analysis of TEM micrographs were
performed using image processing software.
The initial pre-irradiation structures of 18Cr10NiTi
steel are shown in Fig. 1.
Fig. 1. Initial structure for 18Cr10NiTi steel
Steel 18Cr10NiTi structure after solution annealing
contains twins of annealing precipitates of second phase
(carbides and titanium carbonitrides) and dislocations.
Majority of perfect dislocation are extended on partial
dislocation with stacking fault formation. Sum density
of dislocation is ~ 10
8
cm
-2
.
The accelerating-measuring system “ESU-2” with an
oil-free pumping system with a residual target-chamber
pressure of ~ 5∙10
-5
Pa was used for the creation of
radiation damage [16]. The argon ions with energies of
0.7…1.4 MeV were chosen for irradiation experiments
in order to investigate the features of swelling at
different ratio of damage dose and gas concentration.
The implantation temperature varied from 550 to 700 ºC
and controlled by combination of resistive and ion beam
heating. The error in the temperature measurement did
not exceed ±5%. The ion beam current during
irradiation was measured directly from the specimen.
The error in the beam current and, consequently of the
damage dose, did not exceed ±10%.
The damage calculations for argon irradiation were
based on the Kinchin-Pease damage energy model, with
a displacement energy of 40 eV for Fe, Cr, and Ni, as
recommended in ASTM E521-96 (2009) [17]. The
SRIM code [18] was used for calculations of ion
projected ranges (Rp) and range straggling (Rp) to
evaluate the concentration of deposited gas atoms. The
various measures of damage were derived from the
profiles shown in Fig. 2, scaled to the actual Ar and dpa
for each data set.
2. RESULTS AND DISCUSSION
Calculated depth distribution profile of damage and
concentration of Ar atoms implanted in 18Cr10NiTi
steel to a dose of 1.5·10
17
cm
-2
and microstructure
evolution with depth are shown in Fig. 2.
Fig. 2. The depth distribution of damage and concentration of 1.4 MeV Ar ions in 18Cr10NiTi calculated with
SRIM. Microstructure of steel at specified depth after irradiation at 550 ºC
0 200 400 600 800 1000
0
2
4
6
8
0
20
40
60
80
100
120
C
o
n
c
n
tr
a
ti
o
n
,
a
t.
%
Depth, nm
D=1.55e17 Ar/cm
2
D
a
m
a
g
e
,
d
p
a
Irradiation cause damage production at the level
from 40 to 105 dpa with simultaneously implanted
argon in the range of 0.08…6.3 at.%. TEM studies
showed that irradiation with argon at 550 ºC is
accompanied by the creation of cavity type defects. The
higher dpa and Ar clearly lead to increased cavity size,
primarily due to the presence of more numerous and
larger faceted cavities (see Fig. 2).
In the case of 18Cr10NiTi irradiation with metallic
ions (without gas co-injection) to the dose of 50 dpa at a
damage rate of 10
-2
dpa/s, the swelling was observed in
the temperature range 590…640 ºC 19. At lower
temperatures, high sink concentration and low effective
vacancy diffusion coefficient reduce the vacancies
supersaturation and, therefore, inhibit the formation and
growth of cavities 8. However, the simultaneous
introduction of vacancies and argon leads to the
development of porosity even at 550 ºC.
The changes of cavities number density (N) and
average cavity size <d> as a function of depth are
plotted in Fig. 3 in 100 nm sections from 0 to 800 nm.
The removing of ~ 100 nm depth-layer of material was
performed by the electro-pulse technique.
Fig. 3. Average size (d) and number density of cavities
(N) as a function of depth for 1.4 MeV Ar ion
irradiation at 550 ºC to 1.510
17
cm
-2
The number density and average diameter of voids
as well as swelling tended to increase with increasing of
damage level and argon concentration to a depth of
500 nm (see Figs. 3, 4).
Fig. 4. The depth distribution of calculated damage
(dpa), gas concentration (at.%) and swelling (%) for
1.4 MeV Ar ion irradiations at 550 ºC to 1.510
17
cm
-2
.
The value of damage is reduced by an order of
magnitude for better perception
More detailed analysis shows that at depths less than
300 nm, i.e. in conditions of low gas concentration and
high dpa, the size of the cavities virtually does not grow.
Only their density increases, indicating the cavities
nucleation process. This observation demonstrates that
irradiation of austenitic steel with argon ions has the
similar effects as helium irradiation [2]. The
temperature shift of swelling to the region of lower
temperatures is due to argon-associated stabilization of
very small vacancy clusters, which have a very short
lifetime without such stabilization (the same as in
helium case). As a result, a high density of small
cavities is formed. This effect depends on the irradiation
temperature. At a temperature of 550 °C, the mobility of
vacancies is not enough for the growth of large cavities.
The swelling in this case is about 0.1% (see Fig. 4).
However, at irradiation temperature of 645 °C,
everything else being equal, the swelling is (15 ± 3)%
and virtually coincides with the swelling upon
irradiation with metallic ions, which is (13 ± 2)% (see
Fig. 4).
It is seen from Fig. 2 that as the defect density and
argon concentration increases, the swelling increases
even at 550 °C, reaching more than 20% at a depth of
~ 500 nm, which is a manifestation of the joint effect of
a large number of defects and argon concentration.
Fig. 4 shows a decrease in void swelling at depths
greater than 500 nm due mostly to a decrease in void
number density, with more little effect of diameter.
One of the primary questions about He and dpa
effects and their synergisms is He/dpa ratio which varies
substantially for different nuclear facilities and
estimates to be << 1 for fast fission, 10 for fusion, and
up to 100 for spallation proton–neutron [2]. Recently,
this question has been studied in detail for ferritic steels
[20, 21], and it has been shown that helium reduces the
swelling as the He/dpa ratio increases. It is interesting to
determine the effect of Ar/dpa ratio on the swelling
behavior of 18Cr10NiT austenitic steel.
Fig. 5. The depth distributions of damage
in 18Cr10NiTi steel calculated with SRIM for the case
of different Ar
+
ion energies. Corresponding Ar
concentration profiles are shown in the insert
In order to simulate irradiation conditions that
encompass a wide range of Ar/dpa, three irradiations
were performed with Ar
+
energies of 0.7, 1.0, and
1.4 MeV. One nominal damage level of 60 dpa at a
reference point 100 nm from the specimen surface was
obtained. Fig. 5 shows calculated depth profiles of the
dpa damage corresponding to specified ion energies.
Argon deposition profiles in the depth range of interest
are shown in the inset of Fig. 5. Such an approach
yielded average values of 7, 12 and 20 appm/dpa in the
near-surface region for 1.4, 1.0, and 0.7 MeV Ar
+
irradiation, respectively. Fig. 6 shows resulted cavities
microstructure formed after irradiation of 18Cr10NiTi
under considered conditions at temperatures of 600,
625, and 645 ºC.
a b c
d e f
g h i
Fig. 6. Microstructure of 18Cr10NiTi steel irradiated with argon ions to a nominal dose of 60 dpa at temperatures
of 600 (a ,d, g), 625 (b, e, h) and 645 ºC (c, f, i) and Ar/dpa ratio of 20 (a, b, c), 12 (d, e, f) and 7 (g, h, i)
Cavities microstructure was analyzed in the near
surface region (0…120 nm). Table summarizes the
irradiation conditions, and corresponding variations of
cavities number density N, average diameter <d>, as
well as the value of swelling (s) for each investigated
case.
Cavity parameters and swelling with variables Ar/dpa
Ar/dpa,
appm/dpa
Тirr,
С
<d>,
nm
N,
1022 cm-3
s,
%
20 600 9,9 1,44 0,82
625 11,1 1,52 1,15
645 9,6 1,32 0,63
12 600 11,7 1,68 1.5
625 28,3 0,42 5,1
645 23,1 0,49 3,9
7 600 9,1 1,96 0,8
625 9,5/35 0,39 7,6
645 10,3/75 0,11 10,2
As follows from the Table, the maximum cavity size
at a ratio of 20 and 12 appm Ar/dpa is observed at
625 ºC. The cavities number density in the first case
virtually constant, while for 12 appm/dpa considerable
drop of density with temperature is observed. The
maximum swelling rate is located at the temperature of
625 ºC, which is 10 ºC higher compared to irradiation
with metallic ions only.
At a ratio of 7 appm Ar/dpa the evolution of
microstructure is more complicated. At lowest
irradiation temperature of 600 ºC the high-density voids
with average diameter of 9.1 nm are formed. This result
is very similar to that of previous two cases. However,
at irradiation temperatures of 625 and 645 ºC the
situation is dramatically different (Fig. 7). Along with
small pores, voids with an average diameter of 35 nm
are formed at irradiation temperature of 625 ºC, thereby
forming a bimodal distribution. Argon irradiation at
645 ºC produced a low-density of non-uniformly
distributed cavities with bimodal sizes ranging from
10 nm pores to 75 nm faceted voids (see Fig. 7,c). In the
latter case, the value of swelling exceeds 15%.
Synchronous presence of a considerable number of
small and big cavities indicates that there are going both
growth and still being nucleation of cavities.
Nevertheless, under these conditions, the swelling is
determined by large vacancy cavities.
0 20 40 60 80 100
0
10
20
30
40
R
e
la
ti
v
e
f
re
q
u
e
n
c
y
,
%
Cavity diameter, nm
20 appm/dpa
a
0 20 40 60 80 100
0
5
10
15
20
25
12 appm/dpa
R
e
la
ti
v
e
f
re
q
u
e
n
c
y
,
%
Cavity diameter, nm
b
0 20 40 60 80 100
0
5
10
15
20 7 appm/dpa
R
e
la
ti
v
e
f
re
q
u
e
n
c
y
,
%
Cavity diameter, nm
c
Fig. 7. Cavity distributions in steel irradiated to 60 dpa
at 645 °C in the 0…120 nm region for different
appm Ar/dpa ratio
The data presented demonstrate that argon as well as
helium inhibits the swelling as the appm/dpa ratio
grows.
It is considered that argon migrates through the solid
due to enhanced vacancy diffusion, while helium
migrates mainly by interstitial diffusion. This difference
leads to completely different nucleation densities and
has a significant effect on the total void swelling. But
trends, as shown by the present results, can persist.
Therefore, investigation of different materials under the
same irradiation conditions with high-energy argon ions
makes it possible to rank their tolerance to irradiation.
CONCLUSION
This paper shows the changes in microstructure and
swelling of austenitic 18Cr10NiTi after 0.7…1.4 MeV
Ar
+
irradiations in the temperature range of
550…700 ºC to doses between of 40 and 105 dpa with
simultaneously implanted argon levels of
0.08…6.3 at.% at nominal Ar/dpa ratios of 7 and
20 appm/dpa and provides the following conclusions:
Irradiated microstructure strongly depends on Ar
concentration, implantation temperature and level of
displacements per atom.
At temperatures below 600 ºC the swelling is
suppressed despite the growth of damage until the argon
concentration reaches value ~ 0.5 at.%.
At a dose of 60 dpa the addition of argon shifted the
peak swelling rate location by ~ 10…30 ºC higher from
615 ºC with no argon additions.
Argon as well as helium shifts the temperature of the
onset of swelling to the region of low temperatures and
inhibits the swelling as the appm/dpa ratio grows.
The results indicate that argon can be used as an
analogue for helium in implantation-and-annealing
experiments, provided that the doses are adjusted so that
the gas concentrations are equivalent.
REFERENCES
1. S.J. Zinkle, J.T. Busby. Structural materials for
fission & fusion energy // Mater. Today. 2009, v. 12,
N 11, p. 12-19.
2. Y. Dai, G.R. Odette, T. Yamamoto, The effects
of helium on irradiated structural alloys / R. Konings,
T.R. Allen, R.E. Stoller, S. Yamanaka (Eds.). Compre-
hensive Nuclear Materials. Elsevier, 2012, p. 142-193.
3. K. Farrell, M.B. Lewis, N. Packan. Simultaneous
bombardment with helium, hydrogen, and heavy ions to
simulate microstructural damage from fission or fusion
neutrons // Scr. Metall. 1978, v. 12, p. 1121-1124.
4. N.H. Farrell, N.H. Packan. A helium-induced
shift in the temperature dependence of swelling // J.
Nucl. Mater. 1979, v. 86, p. 683-693.
5. F.A. Garner. Radiation damage in austenitic
steels / R. Konings, T.R. Allen, R.E. Stoller, S. Yama-
naka (Ed.). Comprehensive Nuclear Materials, v. 4.
Elsevier, 2012, p. 33-95.
6. G.R. Odette, P. Miao, D.J. Edwards, R.J. Kurtz.
Helium effects on microstructural evolution in tempered
martensitic steels: In situ helium implanter studies in
HFIR // J. Nucl. Mater. 2009, v. 386-388, p. 338-341.
7. T. Yamamoto, G.R. Odette, P. Miao, et al. The
transport and fate of helium in nanostructured ferritic
alloys at fusion relevant He/dpa ratios and dpa rates // J.
Nucl. Mater. 2007, v. 399, p. 367-370.
8. В.Н. Воеводин, И.М. Неклюдов. Эволюция
структурно-фазового состояния и радиационная
стойкость конструкционных материалов. Киев:
Наукова думка, 2006, 376 c.
9. G.S. Was, Z. Jiao, E. Getto, et al. Emulation of
reactor irradiation damage using ion beams // Scripta
Materialia. 2014, v. 88, p. 33-36.
10. E.H. Lee, J.D. Hunn, T.S. Byun, L.K. Mansur.
Effects of helium on radiation-induced defect
microstructure in austenitic stainless steel // J. Nucl.
Mater. 2000, v. 280, p. 18-24.
11. H. Kishimoto, K. Yutani, R. Kasada, A. Kimura.
Helium cavity formation research on oxide dispersed
strengthening (ODS) ferritic steels utilizing dual-ion
irradiation facility // Fus. Eng. Des. 2006, v. 81,
p. 1045-1049.
12. D.J. Mazey, B.C. Sowden, E.J. Jones. Mixed
Ne/Ni beams for radiation damage studies on the
Harwell variable energy cyclotron // Nuclear
Instruments and Methods in Physics Research B. 1985,
v. 12, p. 419-425.
13. N. Marochov and P.J. Goodhew. A comparison
of the growth of helium and neon bubbles in nickel // J.
Nucl. Mater. 1988, v. 158, p. 81-86.
14. N. Marochov and P.J. Goodhew. Neon bubbles
in 316 stainless steel // Radiat. Eff. Lett. 1984, v. 85,
p. 61-65.
15. M.B. Toloczko, F.A. Garner, V.N. Voyevodin
et al. Ion-induced swelling of ODS ferritic alloy MA957
tubing to 500 dpa // J. Nucl. Mater. 2014, v. 453,
p. 323-333.
16. G.D. Tolstolutskaya, V.V. Ruzhytskiy,
I.E. Kopanetz, V.N. Voyevodin, A.V. Nikitin,
S.A. Karpov, A.A. Makienko, T.M. Slusarenko.
Accelerating complex for study of helium and hydrogen
behavior in conditions of radiation defects generation //
Problems of Atomic Science and Technology. Series
“Physics of Radiation Effect and Radiation Materials
Science”. 2010, N 1, p. 135-140.
17. ASTM E521-96, 2009, ASTM.
18. http://www.srim.org/
19. O.V. Borodin, V.V. Bryk, A.S. Kalchenko, et
al. Synergistic effects of helium and hydrogen on self-
ion-induced swelling of austenitic 18Cr10NiTi stainless
steel // J. Nucl. Mater. 2013, v. 442, p. S817-S820.
20. T. Yamamoto, Y. Wu, G. R. Odette, et al. A
dual ion irradiation study of helium-dpa interactions on
cavity evolution in tempered martensitic steels and
nanostructured ferritic alloys // J. Nucl. Mater. 2014,
v. 449, p. 190-199.
21. E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun,
G.S. Was. Effect of pre-implanted helium on void
swelling evolution in self-ion irradiated HT9 // J. Nucl.
Mater. 2015, v. 462, p. 458-469.
Article received 05.03.2020
ВЛИЯНИЕ ОБЛУЧЕНИЯ ИОНАМИ АРГОНА НА ОБРАЗОВАНИЕ И РАЗВИТИЕ
ПОРИСТОСТИ В АУСТЕНИТНОЙ СТАЛИ Х18Н10Т
Г.Д. Толстолуцкая, С.А. Карпов, А.С. Кальченко, И.Е. Копанец, А.В. Никитин, В.Н. Воеводин
Исследовано поведение распухания аустенитной нержавеющей стали 18Cr10NiTi, облученной энергетичными
ионами Ar в диапазоне доз 40…105 смещений на атом (сна) при одновременной имплантации аргона до уровней
0,08…6,3 ат.% при температуре 550…700 °С. Просвечивающая электронная микроскопия (ПЭМ) была
использована для изучения эволюции микроструктуры и определения зависимости распухания от дозы и
концентрации Ar. Показано, что наибольшая плотность и размер полостей наблюдаются в области расчетного
пика дефектов и концентрации Ar. Было обнаружено, что аргон способствует распуханию при более низкой
температуре. При одновременном создании дефектов и имплантации аргона было обнаружено смещение кривой
распухания в сторону более высоких температур по сравнению с облучением ионами металлов. Поведение
распухания аустенитной стали 18Cr10NiTi, облученной энергетичными ионами аргона, сравнивается с таковым в
случае имплантации гелия.
ВПЛИВ ОПРОМІНЕННЯ ІОНАМИ АРГОНУ НА УТВОРЕННЯ І РОЗВИТОК
ПОРИСТОСТІ В АУСТЕНІТНІЙ СТАЛІ Х18Н10Т
Г.Д. Толстолуцька, С.О. Карпов, О.С. Кальченко, І.Є. Копанець, А.В. Нікітін, В.М. Воєводін
Досліджено поведінку розпухання аустенітної нержавіючої сталі 18Cr10NiTi, опроміненої
енергетичними іонами Ar в діапазоні доз 40…105 зсувів на атом (зна) при одночасній імплантації аргону до
рівнів 0,08…6,3 ат.% при температурі 550..700 °С. Просвічувальна електронна мікроскопія (ПЕМ) була
використана для вивчення еволюції мікроструктури та визначення залежності розпухання від дози і
концентрації Ar. Показано, що найбільша щільність і розмір порожнин спостерігаються в області
розрахункового піку дефектів і концентрації Ar. Було виявлено, що аргон сприяє розпуханню при більш
низькій температурі. При одночасному створенні дефектів і імплантації аргону було виявлено зсув кривої
розпухання в сторону більш високих температур у порівнянні з опроміненням іонами металів. Поведінка
розпухання аустенітної сталі 18Cr10NiTi, опроміненої енергетичними іонами аргону, порівнюється з такою
у разі імплантації гелію.
http://www.srim.org/
|