Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field
The possibilities and conditions of effective interaction, in particular acceleration, of charged particles by the field of an intense plane electromagnetic wave in the presence of an external constant magnetic field are considered. It is shown that the well-known conditions of cyclotron resonances...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2020 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194530 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field / V.А. Buts, V.V. Kuzmin, A.P. Tolstoluzhsky // Problems of atomic science and tecnology. — 2020. — № 3. — С. 73-77 — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194530 |
|---|---|
| record_format |
dspace |
| spelling |
Buts, V.А. Kuzmin, V.V. Tolstoluzhsky, A.P. 2023-11-27T12:13:28Z 2023-11-27T12:13:28Z 2020 Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field / V.А. Buts, V.V. Kuzmin, A.P. Tolstoluzhsky // Problems of atomic science and tecnology. — 2020. — № 3. — С. 73-77 — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 01.65.+g, 41.75.Jv, 76.40.+b https://nasplib.isofts.kiev.ua/handle/123456789/194530 The possibilities and conditions of effective interaction, in particular acceleration, of charged particles by the field of an intense plane electromagnetic wave in the presence of an external constant magnetic field are considered. It is shown that the well-known conditions of cyclotron resonances require generalization. New conditions for the resonant interaction of charged particles are formulated, which contain not only the strength of the external magnetic field (as the well-known conditions of cyclotron resonances) but also the field strength of the wave. Cases of both small wave field strengths, so large, are considered. It is shown that new resonance conditions open up new possibilities for effective particle acceleration. Розглянуто можливості та умови ефективної взаємодії, зокрема, прискорення заряджених частинок полем інтенсивної плоскої електромагнітної хвилі при наявності зовнішнього постійного магнітного поля. Показано, що відомі умови циклотронних резонансів вимагають узагальнення. Сформульовано нові умови резонансної взаємодії заряджених частинок, які містять не тільки напруженість зовнішнього магнітного поля (як відомі умови циклотронних резонансів), але і напруженість поля хвилі. Розглянуто випадки як малих напруженостей поля хвиль, так великих. Показано, що нові резонансні умови відкривають нові можливості ефективного прискорення частинок. Рассмотрены возможности и условия эффективного взаимодействия, в частности, ускорения заряженных частиц полем интенсивной плоской электромагнитной волны при наличии внешнего постоянного магнитного поля. Показано, что известные условия циклотронных резонансов требуют обобщения. Сформулированы новые условия резонансного взаимодействия заряженных частиц, которые содержат не только напряженность внешнего магнитного поля (как известные условия циклотронных резонансов), но и напряженность поля волны. Рассмотрены случаи как малых напряженностей поля волн, так и больших. Показано, что новые резонансные условия открывают новые возможности эффективного ускорения частиц. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Beam dynamics Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field Прискорення частинок інтенсивними електромагнітними полями у вакуумі при наявності зовнішнього магнітного поля Ускорение частиц интенсивными электромагнитными полями в вакууме при наличии внешнего магнитного поля Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| spellingShingle |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field Buts, V.А. Kuzmin, V.V. Tolstoluzhsky, A.P. Beam dynamics |
| title_short |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| title_full |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| title_fullStr |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| title_full_unstemmed |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| title_sort |
acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field |
| author |
Buts, V.А. Kuzmin, V.V. Tolstoluzhsky, A.P. |
| author_facet |
Buts, V.А. Kuzmin, V.V. Tolstoluzhsky, A.P. |
| topic |
Beam dynamics |
| topic_facet |
Beam dynamics |
| publishDate |
2020 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Прискорення частинок інтенсивними електромагнітними полями у вакуумі при наявності зовнішнього магнітного поля Ускорение частиц интенсивными электромагнитными полями в вакууме при наличии внешнего магнитного поля |
| description |
The possibilities and conditions of effective interaction, in particular acceleration, of charged particles by the field of an intense plane electromagnetic wave in the presence of an external constant magnetic field are considered. It is shown that the well-known conditions of cyclotron resonances require generalization. New conditions for the resonant interaction of charged particles are formulated, which contain not only the strength of the external magnetic field (as the well-known conditions of cyclotron resonances) but also the field strength of the wave. Cases of both small wave field strengths, so large, are considered. It is shown that new resonance conditions open up new possibilities for effective particle acceleration.
Розглянуто можливості та умови ефективної взаємодії, зокрема, прискорення заряджених частинок полем інтенсивної плоскої електромагнітної хвилі при наявності зовнішнього постійного магнітного поля. Показано, що відомі умови циклотронних резонансів вимагають узагальнення. Сформульовано нові умови резонансної взаємодії заряджених частинок, які містять не тільки напруженість зовнішнього магнітного поля (як відомі умови циклотронних резонансів), але і напруженість поля хвилі. Розглянуто випадки як малих напруженостей поля хвиль, так великих. Показано, що нові резонансні умови відкривають нові можливості ефективного прискорення частинок.
Рассмотрены возможности и условия эффективного взаимодействия, в частности, ускорения заряженных частиц полем интенсивной плоской электромагнитной волны при наличии внешнего постоянного магнитного поля. Показано, что известные условия циклотронных резонансов требуют обобщения. Сформулированы новые условия резонансного взаимодействия заряженных частиц, которые содержат не только напряженность внешнего магнитного поля (как известные условия циклотронных резонансов), но и напряженность поля волны. Рассмотрены случаи как малых напряженностей поля волн, так и больших. Показано, что новые резонансные условия открывают новые возможности эффективного ускорения частиц.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194530 |
| citation_txt |
Acceleration of particles by intensive electromagnetic fields in a vacuum with external magnetic field / V.А. Buts, V.V. Kuzmin, A.P. Tolstoluzhsky // Problems of atomic science and tecnology. — 2020. — № 3. — С. 73-77 — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT butsva accelerationofparticlesbyintensiveelectromagneticfieldsinavacuumwithexternalmagneticfield AT kuzminvv accelerationofparticlesbyintensiveelectromagneticfieldsinavacuumwithexternalmagneticfield AT tolstoluzhskyap accelerationofparticlesbyintensiveelectromagneticfieldsinavacuumwithexternalmagneticfield AT butsva priskorennâčastinokíntensivnimielektromagnítnimipolâmiuvakuumíprinaâvnostízovníšnʹogomagnítnogopolâ AT kuzminvv priskorennâčastinokíntensivnimielektromagnítnimipolâmiuvakuumíprinaâvnostízovníšnʹogomagnítnogopolâ AT tolstoluzhskyap priskorennâčastinokíntensivnimielektromagnítnimipolâmiuvakuumíprinaâvnostízovníšnʹogomagnítnogopolâ AT butsva uskoreniečasticintensivnymiélektromagnitnymipolâmivvakuumeprinaličiivnešnegomagnitnogopolâ AT kuzminvv uskoreniečasticintensivnymiélektromagnitnymipolâmivvakuumeprinaličiivnešnegomagnitnogopolâ AT tolstoluzhskyap uskoreniečasticintensivnymiélektromagnitnymipolâmivvakuumeprinaličiivnešnegomagnitnogopolâ |
| first_indexed |
2025-11-24T05:08:24Z |
| last_indexed |
2025-11-24T05:08:24Z |
| _version_ |
1850842346696998912 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2020. №3(127) 73
BEAM DYNAMICS
ACCELERATION OF PARTICLES BY INTENSIVE
ELECTROMAGNETIC FIELDS IN A VACUUM WITH EXTERNAL
MAGNETIC FIELD
V.А. Buts1,2,3, V.V. Kuzmin1, A.P. Tolstoluzhsky1
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2Institute of Radio Astronomy of NAS of Ukraine, Kharkiv, Ukraine;
3V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: vbuts@kipt.kharkov.ua
The possibilities and conditions of effective interaction, in particular acceleration, of charged particles by the
field of an intense plane electromagnetic wave in the presence of an external constant magnetic field are considered.
It is shown that the well-known conditions of cyclotron resonances require generalization. New conditions for the
resonant interaction of charged particles are formulated, which contain not only the strength of the external magnetic
field (as the well-known conditions of cyclotron resonances) but also the field strength of the wave. Cases of both
small wave field strengths, so large, are considered. It is shown that new resonance conditions open up new possi-
bilities for effective particle acceleration.
PACS: 01.65.+g, 41.75.Jv, 76.40.+b
INTRODUCTION
Acceleration of charged particles in a vacuum seems
to be a tempting prospect. There are a large number of
works (both theoretical and experimental) devoted to
this problem (see, for example, [1 - 8]). They also indi-
cate the advantages of such acceleration and the prob-
lems that one has to face when solving such tasks.
In the presence of a constant magnetic field, the sit-
uation changes qualitatively. Cyclotron resonances
appear ( /Hkvω ω γ= +
). When using them, an effec-
tive interaction of waves and particles is possible. Par-
ticularly attractive is the auto-resonance acceleration
scheme. However, to realization this scheme when us-
ing laser radiation fields, abnormally large external
magnetic fields are required. It should be noted that only
external magnetic field intensity ( Hω ) is included in
cyclotron resonance conditions. There is no wave field
strength under these conditions. This is due to the fact
that the theory of cyclotron resonances developed when
almost always the wave strength parameter
( /eE mcε ω= ) was small. Therefore, it was not neces-
sary to take it into account.
The wave intensity appeared only in the study of
nonlinear cyclotron resonances. With the development
of laser technology, the situation could change. As indi-
cated above, the use of cyclotron resonances seemed
simply impossible. In addition to lasers, sources of
intense electromagnetic radiation appeared, such as, for
example, CRM. However, only the usual conditions of
cyclotron resonances were still used (see above).
It is clear that when the wave power parameter be-
comes significant, the usual conditions for cyclotron
resonance must be modified. In this conditions, both the
strength of the external magnetic field and the strength
of the fields with which the particles interact must be
present. This is especially true for the case of laser
fields, when the cyclotron frequency is much lower than
the frequency of laser radiation ( / 1Hω ω << ). This
work is devoted to the analysis of the use of both the
usual conditions of cyclotron resonance and new modi-
fied conditions.
1. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS
Consider a charged particle that moves in an exter-
nal constant magnetic field 0H directed along the axis z
and in the field of a plane electromagnetic wave, which
in the general case has the following components:
[ ]
Re( exp( )),
Re exp( ) ,
i t i
c i t i
ω
ω
ω
= −
= −
Ε kr
H kE kr
(1)
where 0=E E α , { }, ,x y ziα α α=α is wave polarization
vector.
Without limiting of generality, we can assume that
the wave vector k has only two nonzero components xk
and zk . In dimensionless variables / mc→p p , tτ ω→ ,
c
ω
→r r , particle equations of motion can be reduced to:
( ) [ ] ( )1 Re Rei iHd e e
d
ψ ψω
τ γ γ γ
= − + +
p kp kph p . (2)
τ γ
= =
r pdv
d
, 1d
d
ψψ
τ γ
= = −
kp
,
where 0/ H=h H , /H eH mcω ω= , 0ε= α ,
0 0( / )ε ω= eE mc , ψ τ= −kr , k is unit vector in the
direction of wave propagation, 2 1 2(1 )γ = +p is particle
energy, p is its momentum.
Multiplying the first of equations (2) by p , we ob-
tain the following equation describing the change of
particle energy:
( )Re id e
d
ψγ
τ
= v . (3)
Using equations (3), from the system of equation (2)
we find the integral of motion:
( ) [ ]Re consti
Hi eψ ω γ+ − − =p rh k . (4)
mailto:vbuts@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2020. №3(127) 74
2. PARTICLE DYNAMICS
IN HIGH INTENSITY FIELDS ( 2 1>> )
We firstly consider the case of wave propagation
along an external magnetic field 0H . Then the vector
equation (2) and equation (3) can be conveniently re-
written in the following form:
( )
cos ( ),
sin ( ),
1 cos sin ,
x x H y
y y H x
x x y y
p p
p p
p p
ψε ψ ω γ
ψε ψ ω γ
γ ε ψ ε ψ
γ
= +
= − −
= −
(5)
where 0 0,ε α ε ε α ε= =x x y y .
Note that the value Cγψ = is an integral. Then the
equations for the transverse components of the particle
pulse can be issued separately in closed form:
cos ,
sin .
x x y
y y x
p p
p p
ε ψ
ε ψ
′ = +Ω
′ = − −Ω
(6)
Here
ψ
′ =
dpp
d
, ( )/ω γψΩ = H .
The solutions of the system of equations (6) under
the condition Ω = const can be presented in the analyti-
cal form:
( )
( )
1
2
2
2
sin cos sin ,
1
sin cos cos ,
1
x
y
p A B
p C D
ε
ψ ψ ψ
ε
ψ ψ ψ
= Ω + Ω +
−Ω
= Ω + Ω +
−Ω
, (7)
where
0 0 0 0
1 2
0 0 0 02 2
sin cos
sin sin cos cos
1 1
x yA p pψ ψ
ε ε
ψ ψ ψ ψ
= Ω + Ω +
+ Ω + Ω
Ω − Ω −
0 0 0 0
1 2
0 0 0 02 2
cos sin
cos sin sin cos
1 1
x yB p pψ ψ
ε ε
ψ ψ ψ ψ
= Ω − Ω +
+ Ω − Ω
Ω − Ω −
,
C B= − , D A= , 1 x yε ε ε= +Ω , 2 y xε ε ε= +Ω .
Using (5), it is easy to find analytical expressions for
the longitudinal momentum:
( )2 2 2 2
0 0 0
1
2z x y x y zp p p p p p
γψ
= + − + +
. (8)
Similarly, we define the expression for the particle
energy γ , for example, for a wave with linear polariza-
tion:
( )2 2 2 2
0 0 0
1
2 x y x yp p p pγ γ
γψ
= + − + +
. (9)
It can be seen from the expressions obtained for the
components of the particle momentum that both the mag-
nitude of the momentum and the particle energy are peri-
odic functions of the phase. Therefore, the effective trans-
fer of energy from laser radiation to charged particles will
occur only in a limited space (or for a limited time). The
value of this space (or time interval) can be found by
determining, for example, the dependence of the phase on
time. It is easy to do. So, for linear polarization, it is easy
to find the following expression for the phase
( )1/32 2 1/ /3~ 6 0Cψ γ ε τ . (10)
From this formula it is seen that the dimensionless
time of effective particle acceleration is proportional to
the integral ( )zp Сγ γ− = . It will be the greater, the
greater this integral.
The above expressions for the components of mo-
mentum and for energy were obtained under the condi-
tions when 1Ω ≠ , i.e. when there are no autoresonance
conditions. If the autoresonance conditions are satisfied
1Ω = , then using the system of equations (6) we obtain
the following expressions for the momenta in the case
of a wave with circular polarization:
0 0
0 0
( ) cos
( )sin
x
y
p
p
ε ψ ψ ψ
ε ψ ψ ψ
= −
= − − . (11)
3. DYNAMICS OF PARTICLES
IN CYCLOTRON RESONANCES
Above, expressions have been obtained for cases
when it is possible to obtain solutions in an explicit
analytical form. In these expressions, cyclotron reso-
nances are not revealed explicitly. Below we obtain a
general system of equations in which cyclotron reso-
nances can be explicitly single out.
For this, it is convenient to introduce new variables
, , ,zp p θ ξ⊥ and η , which will explicitly display the
dynamics of particles in a constant magnetic field:
cosxp p θ⊥= , sinyp p θ⊥= , zp p=
, 2 2
x yp p p⊥ = +
sin
H
px ξ θ
ω
⊥= − , cos
H
py η θ
ω
⊥= + . (12)
We substitute these variables in the vector equation
(2). Expanding the right-hand side of the obtained equa-
tions in a series of Bessel functions, we have:
( )
0
1 cos( )
cos( )
z z x n y n n
n
z x z n n
n
nk v J J
dp
d nk v J
α α θ
µ
ε
τ
α θ
µ
+∞
=−∞⊥
+∞
=−∞
′− + +
=
+
∑
∑
, (13)
where /x Hk pµ ω⊥= , , ( ),n z x n nn k z k J Jθ τ θ ξ µ= + − − =
( )n nJ dJ dµ µ′ = .
Similarly, we obtain expressions for
, , , , ,z np γ θ ξ η θ
:
0
0
1 cos
cos
z H
z n n
n
z x n y n n
n
dp n J
d
nk v J J
ω
ε α θ
τ γ
ε α α θ
µ
∞
=−∞
∞
⊥
=−∞
= − +
′+ +
∑
∑
, (14)
0 cosx n y n z z n n
n
d nv J v J v J
d
γ ε α α α θ
τ µ
∞
⊥ ⊥
=−∞
′= + +
∑ , (15)
( )
( )
0
0
1
sin( )
sin( )
z z
x n y n n
n
x H
z z n y n n
n
k vd nJ J
d p
k
v J v J
p
εθ α α θ
τ µ
ε ω
α α θ
γ
+∞
=−∞
+∞
⊥
=−∞
− ′= − + −
⊥
′− − −
⊥
∑
∑
(16)
( )1 siny z y x n n
nH
d nk v k v J
d
ξ α α θ
τ ω µ
∞
⊥
=−∞
= − − +
∑
(17)
ISSN 1562-6016. ВАНТ. 2020. №3(127) 75
( )( )1 ( ) cosx z n x z n y n n
nH
d k v J k v J v J
d
η α α α θ
τ ω
∞
⊥
=−∞
′= − − + −∑
(18)
cos( ) sin( )
, , zp p pdx dy dz
d d d
θ θ
τ γ τ γ τ γ
⊥ ⊥= = = . . (19)
Further on the right hand we leave only the reso-
nance terms, i.e. terms for which the parameters satisfy
the condition of one of the cyclotron resonances:
Hkv nω ω= +
. Considering these conditions to be ful-
filled, it is possible to obtain equations describing the
motion of a particle under conditions of isolated reso-
nance.
( ) 0
0
0
1 1 cos ; cos ;
1 ; cos ;
z z n n z z n n
H
n n z z n n
p k v W p k W
p
k v n W
ε
ε θ θ
γ
εω
θ γ θ
γ γ
⊥
⊥
= − ⋅ =
= ∆ ≡ − − = ⋅
(20)
where: .n x n y n z z n
nW p J p J p Jα α α
µ⊥ ⊥
′≡ + +
Carrying out the expansion ( )n γ∆ near the reso-
nance value 0γ from the last equations of system (20)
we obtain a closed system for describing the dynamics
of particles in the isolated resonance:
2
0
1 z
n
kθ δγ
γ
−
= , 0
0
cosn nWε
δγ θ
γ
= . (21)
Using these equations, it is easy to find the magni-
tude of particle energy gain in isolated cyclotron reso-
nance:
( )2
04 / 1n zW kδγ ε= − .
4. NEW CYCLOTRON RESONANCES
The system of equations (13) - (19) was studied in
sufficient detail in [5, 6, 8]. This system is convenient
for analysis when the parameter ε is small. In this case,
the averaging method was used to analyze this system.
However, system (13) - (19) is strictly valid for any
parameter value. Also, small parameters can be, in par-
ticular, Bessel functions for large parameter values 0ε .
We will be interested in the dynamics of particles in
laser fields. It means that in real conditions the dimen-
sionless cyclotron frequency will also be a small param-
eter ( 1Hω << ). In addition, in most cases, we will be
interested in the dynamics of relativistic particles
( 1γ >> ). In general case, the resonance conditions are
conditions:
1 0n z z xk v k nθ ξ θ= − − + = (22)
Note that condition (22) takes into account the dy-
namics of the leading center, which substantially de-
pends on the electric field strength of the laser radiation.
In the special case ( 0ξ = ), conditions (22) contain the
well-known conditions of cyclotron resonance. We
consider some particular new resonance conditions:
1. The simplest case is when the parameters of the
fields and particles satisfy the following relations
0n = 0, 1z xk k= = 1Hω << 0x zε ε= = . (23)
Then condition (22) can be represented as:
0cos sin
4 2
y
HH
p
p
ε π πθ
ωω
⊥
⊥
− = −
. (24)
It can be seen that the resonance condition substan-
tially depends on the wave strength parameter (εy).
2. If parameters of fields and particles satisfy relation:
0n = ; 1, 1z xk k→ << ; 1Hω << ; 0x zε ε= = ,
then the expression for cyclotron resonance takes the form:
02 sin 1x y
z
H
k
v
ε
θ
ω γ
+ = . (25)
Using resonance conditions (22), as well as equa-
tions from system (13) - (19), we can obtain the follow-
ing equation for describing the phase dynamics in the
vicinity of resonance:
2
0 0cos 0
2
y xk vε
θ θ
γ
⊥+ = . (26)
Equation (26) is the equation of a mathematical pen-
dulum. Analysis of such equations and consequence of a
similar analysis can be found in [5, 6, 9].
3. The most interesting case is when the parameters
of the wave and particles satisfy the conditions:
1n µ= >> ; ( )21, ~ 1 / 1z xk k γ→ << ; 1Hω << ;
0x zε ε= = . (27)
The importance of this case is due to the fact that it
allows us to analyze the resonance at large values of
number ( 1n >> ). Besides, this case corresponds to the
situation when the number of the Bessel function is
equal to the argument of the Bessel function. In this
case, as is known, the Bessel function decreases most
slowly with the growth of its number and argument
( 3( ) ~ 1 /nJ n n ). The resonance condition for this case
has the form:
2 22 sinH y x n n
n x
H
n k p J
k n
ω ε θ
θ ξ θ
γω
⊥−
= − = ≡ ∆ , (28)
0( ) 0γ∆ = .
Here 0γ is value of energy at which the exact reso-
nance condition is satisfied ( 0( ) 0γ∆ = ). To describe
the dynamics of the phase, we can derive the equation:
2 2
1cos sin cos 0n n n nθ θ θ θ+Ω −Ω = , (29)
where:
2 2 2
2 2 y n
H
v Jε
γω
⊥Ω = ; 2
1 2
H y nn v Jω ε
γ
⊥Ω = .
Equation (29) is also the equation of a nonlinear
pendulum and has the integral:
2 2
2 2
1sin sin
2 2
n
n n C constθ
θ θΩ
+ −Ω = =
. (30)
Analysis of this integral shows that the maximum
phase velocity can be estimated by maxθ ≈ Ω . Using
this estimate, it is easy to determine the value of addi-
tion to the particle energy that they obtain when inter-
acting with the wave under resonance conditions:
0
0( )n
γ
θ γ δγ
γ
∂∆
= ∆ + ∂
,
( ) ( ) ( ) 3
maxmax
/ / y n HJδγ θ γ ε ω γ= ∂∆ ∂ ≈ . (31)
ISSN 1562-6016. ВАНТ. 2020. №3(127) 76
Comparing this additive with those obtained under
conditions of known cyclotron resonances, we can see
that it can be more significant.
5. NUMERICAL ANALYSIS
For a wave propagating along the direction of the
external magnetic field, analytical solutions of equations
(5.6) are found for momentum and coordinates of parti-
cle in an implicit form as a function of phase ψ.
Besides, the integral Cγψ = is break down when
the wave propagates at an angle to the external magnetic
field ( 0)xk k⊥ = ≠ . Therefore, a numerical analysis of
equations (2) was carried out to investigate the dynam-
ics of charged particles in the field of the plane electro-
magnetic wave and in the external constant magnetic
field 0H directed along the axis z . The cases of linear
and circular polarization of the wave field are consid-
ered. Since we are mainly interested in particle accelera-
tion, we consider this process at sufficiently large initial
values of the longitudinal momentum of the particles
and small values of the transverse momentum (for small
values of the transverse momentum, the parameter
1µ << ).
The analysis was carried out at the initial values of
the longitudinal momentum 0 10=zp ; the transverse
momenta were chosen equal to 0 0 0.1= =x yp p . The
initial values of the transverse coordinates are selected
in accordance with the values of the transverse momenta
and the external constant magnetic field, the initial co-
ordinate 0 ( 0) 0z z t= = = . The accuracy of the calcula-
tions was controlled using the integral (4). In all the
numerical studies, the value of the integral was pre-
served with a sufficient degree of accuracy: the value of
deviation from the integral did not exceed the values
7 610 10− −− for the coordinates and momenta of charged
particles of the order 103.
As follows from the above formulas, the value of the
longitudinal momentum zp p⊥>> therefore the value
zp practically coincides with the energy value γ .
If the initial values of the momenta of the charged
particles are such that the condition is satisfied
γ= − zC p , where С constγψ= = is the integral of
particle motion, a scheme of autoresonant interaction of
particles with laser fields at ω γψ= H can be realized.
Figs. 1, 2 shows graphs of the dependence of the longi-
tudinal and transverse pulses, as well as the longitudinal
and transverse coordinates of the particles on time under
conditions of autoresonance for a wave with circular
polarization 0 , 0ε ε ε ε= = =x y z for the field ampli-
tude 0 0.75ε = and 0 0 0.5087Hω γ ψ= = .
In the case of linear polarization 0,ε ε= =x z 0ε ε=y , the
graphs of the dependence of the longitudinal and trans-
verse pulses, as well as the longitudinal and transverse
coordinates of the particles on time under conditions of
autoresonance are shown in Figs. 3, 4.
Fig. 1. Ddependences of the longitudinal pz
and transverse momenta on time / 2τ π=T .
Circular polarization
Fig. 2. Dependences of the longitudinal z
and transverse coordinates x, y on time / 2τ π=T .
Circular polarization
Fig. 3. Dependences of the longitudinal pz
and transverse momenta on time / 2τ π=T .
Linear polarization
Fig. 4. Dependences of the longitudinal z
and transverse coordinates x, y on time / 2τ π=T .
Linear polarization
As can be seen from these graphs, the maximum
values of the longitudinal and transverse momenta with
circular polarization are approximately two times higher
than their values with linear polarization. The depend-
ence of the longitudinal coordinate on time, as expected
(βz ≈ c), has not practically changed. The oscillation
period of the transverse coordinates and momenta is
approximately two times large than in the case of linear
polarization.
In the case of oblique propagation ( 0.075xk = ) of the
linearly polarized wave 00,ε ε ε ε= = =x z y , the dependenc-
es of the longitudinal and transverse coordinates and
momenta of the particle for cyclotron frequency
0 0Hω γ ψ= and parameter values are shown in Figs. 5, 6.
Fig. 5. Ddependences of the longitudinal pz
and transverse momenta on time / 2τ π=T .
Linear polarization
Fig. 6. Dependences of the parameter µ
and transverse coordinates x, y on time / 2τ π=T .
Linear polarization
ISSN 1562-6016. ВАНТ. 2020. №3(127) 77
From the graphs in Figs. 5, 6 it is seen that the inter-
action of a charged particle with a field is resonant char-
acter. The time intervals at which the parameter µ oscil-
lates around a certain average value are clearly distin-
guished. In accordance with the change in the parameter
µ, the average energy of the oscillations of the energy of
the charged particle also changes. At the same time,
contribution to the energy increment gives not only one
harmonic with a fixed number n, but also adjacent har-
monics n−1, n+1:
1
3
1
( ) ( )
n
y n H
k n
n Jγ ε µ ω γ
+
= −
∆ ≈ ∑ . (32)
Fig. 7. Dependences of particle energy on time / 2τ π=T
for different regions change of parameter µ. Blue color
indicates the curve of the particle energy versus time
obtained by numerically solving the system of equations
(2). Red color indicates the curve of the dependence
of the particle energy on time found by the formula (32)
As can be seen from the graphs in Fig. 7, we can
speak of a sufficiently good qualitative agreement be-
tween the results of the numerical calculation of the
system of equations (2) and the results of evaluation by
formula (32).
CONCLUSIONS
Let’s state the most important results of this work.
1. It is shown that the well-known conditions of cy-
clotron resonance should be generalized. The generaliza-
tion is that these conditions include both the strength of
the external magnetic fields and the field strength of the
electromagnetic waves with which the particles interact.
The use of these new resonant conditions makes possi-
ble to implement a scheme of resonant interaction of
particles even with laser radiation fields in vacuum.
2. If the initial parameters of charged particles are such
that the condition z HC pγ ω= − = , where С constγψ= = is
satisfied, where C is the integral of particle motion, then
a scheme of autoresonant interaction of particles with
laser fields in vacuum can be implemented.
3. Conducted numerical studies confirm qualitative-
ly and quantitatively the key results of analytical studies
within the framework of this model.
REFERENCES
1. V.YA. Davydovskiy. O vozmozhnosti rezonansnogo
uskoreniya zaryazhennykh chastits
elektromagnitnymi volnami v postoyannom
magnitnom pole // ZHETF. 1962, v. 43, № 9, p. 886-
888.
2. A.A. Kolomenskiy, A.N. Lebedev. Avtorezonansnoye
dvizheniye chastitsy v ploskoy elektromagnitnoy
volne// DAN SSSR. 1962, v. 145, № 6, p. 1259-1261.
3. V.F. Kravchenko, A.A. Kuraev, A.K. Sinitsyn. Non-
synchronous interactions // Phys. Usp. 2007, v. 50,
№ 5, p. 489-511. (UFN, v. 177, № 5, p. 511-534).
4. V.P. Milant’ev. Cyclotron autoresonance − 50 years
since discovery // Phys. Usp. 2013, v. 56, № 8,
p. 823-832.
5. V.A. Balakirev, V.A. Buts, A.P. Tolstoluzhskii,
Yu.A. Turkin. Randomization of motion of a beam of
phased oscillators // JETP. 1983, v. 57, № 4, p. 741.
6. V.A. Balakirev, V.A. Buts, A.P. Tolstoluzhskii,
Yu.A. Turkin. Charged-particle dynamics in the
field of two electromagnetic waves // Sov. Phys.
JETP. 1989, v. 68. №4, p. 710-717.
7. V.A. Buts, A.V. Buts. Dinamika zaryazhennykh
chastits v pole intensivnoy poperechnoy
elektromagnitnoy volny // ZHETF. 1996, v. 110, №
3(9), p. 818-831.
8. V.A. Buts, V.V. Kuz’min, A.P. Tolstoluzhsky. Features
of the Dynamics of Particles and Fields at Cyclotron
Resonances // JETP. 2017, v. 125, № 4, p. 651-662.
9. V.A. Buts. Obzor. Poblemy teoreticheskoy fiziki.
Seriya. Problemy teoreticheskoy i matematicheskoy
fiziki. Regulyarnaya i khaoticheskaya dinamika
zaryazhennykh chastits pri vzaimodeystviyakh tipa
volna-chastitsa. v. 2. Kharkov, 2017, p. 122-241.
Article received 24.10.2019
УСКОРЕНИЕ ЧАСТИЦ ИНТЕНСИВНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ПОЛЯМИ В ВАКУУМЕ
ПРИ НАЛИЧИИ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ
В.А. Буц, В.В. Кузьмин, А.П. Толстолужский
Рассмотрены возможности и условия эффективного взаимодействия, в частности ускорения, заряженных частиц по-
лем интенсивной плоской электромагнитной волны при наличии внешнего постоянного магнитного поля. Показано, что
известные условия циклотронных резонансов требуют обобщения. Сформулированы новые условия резонансного взаи-
модействия заряженных частиц, которые содержат не только напряженность внешнего магнитного поля (как известные
условия циклотронных резонансов) но и напряженность поля волны. Рассмотрены случаи как малых напряженностей
поля волн, так больших. Показано, что новые резонансные условия открывают новые возможности эффективного уско-
рения частиц.
ПРИСКОРЕННЯ ЧАСТИНОК ІНТЕНСИВНИМИ ЕЛЕКТРОМАГНІТНИМИ ПОЛЯМИ У ВАКУУМІ
ПРИ НАЯВНОСТІ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ
В.О. Буц, В.В. Кузьмін, О.П. Толстолужський
Розглянуто можливості та умови ефективної взаємодії, зокрема прискорення, заряджених частинок полем інтенсивної
плоскої електромагнітної хвилі при наявності зовнішнього постійного магнітного поля. Показано, що відомі умови
циклотронних резонансів вимагають узагальнення. Сформульовано нові умови резонансного взаємодії заряджених
частинок, які містять не тільки напруженість зовнішнього магнітного поля (як відомі умови циклотронних резонансів)
але і напруженість поля хвилі. Розглянуто випадки як малих напруженостей поля хвиль, так великих. Показано, що нові
резонансні умови відкривають нові можливості ефективного прискорення частинок.
http://www.jetp.ac.ru/cgi-bin/r/index?a=s&auid=125397
http://www.jetp.ac.ru/cgi-bin/r/index?a=s&auid=125398
http://www.jetp.ac.ru/cgi-bin/r/index?a=s&auid=125397
http://www.jetp.ac.ru/cgi-bin/r/index?a=s&auid=125398
Introduction
1. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS
2. PARTICLE DYNAMICS IN HIGH INTENSITY FIELDS ( )
3. DYNAMICS OF PARTICLES IN CYCLOTRON RESONANCES
4. NEW CYCLOTRON RESONANCES
5. NUMERICAL ANALYSIS
CONCLUSIONS
references
|