Numerical simulation of multibeam systems by EL&ION code

Based on the tube method, taking into account the three second law for the current in each tube, the program EL&ION for preliminary rapid numerical analysis of the electron-optical system was developed, using which the system was developed for generating an ion beam of reactive gases with an ene...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2020
Main Author: Martynenko, P.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/194534
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Numerical simulation of multibeam systems by EL&ION code / P.A. Martynenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 92-93. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194534
record_format dspace
spelling Martynenko, P.A.
2023-11-27T12:18:30Z
2023-11-27T12:18:30Z
2020
Numerical simulation of multibeam systems by EL&ION code / P.A. Martynenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 92-93. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 29.25.Ni
https://nasplib.isofts.kiev.ua/handle/123456789/194534
Based on the tube method, taking into account the three second law for the current in each tube, the program EL&ION for preliminary rapid numerical analysis of the electron-optical system was developed, using which the system was developed for generating an ion beam of reactive gases with an energy of up to 50 keV and a current of 10…20 mA in the presence of high-density electron beam.
На основі методу трубок з урахуванням закону трьох других для струму в кожній трубці розроблена програма EL-ІON попереднього швидкого чисельного аналізу електронно-оптичної системи, за допомогою якої була розрахована система формування пучка іонів реакційно-здатних газів з енергією до 50 кеВ і струмом 10…20 мА при наявності електронного пучка з високою густиною.
На основе метода трубок с учетом закона трех вторых для тока в каждой трубке разработана программа EL-ION предварительного быстрого численного анализа электронно-оптической системы, с помощью которой была рассчитана система формирования пучка ионов реакционно-способных газов с энергией до 50 кэВ и током 10…20 мА при наличии высокоплотного электронного пучка.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Beam dynamics
Numerical simulation of multibeam systems by EL&ION code
Чисельне моделювання багатопучкових систем за допомогою EL&ION-коду
Численное моделирование многопучковых систем с помощью EL&ION-кода
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Numerical simulation of multibeam systems by EL&ION code
spellingShingle Numerical simulation of multibeam systems by EL&ION code
Martynenko, P.A.
Beam dynamics
title_short Numerical simulation of multibeam systems by EL&ION code
title_full Numerical simulation of multibeam systems by EL&ION code
title_fullStr Numerical simulation of multibeam systems by EL&ION code
title_full_unstemmed Numerical simulation of multibeam systems by EL&ION code
title_sort numerical simulation of multibeam systems by el&ion code
author Martynenko, P.A.
author_facet Martynenko, P.A.
topic Beam dynamics
topic_facet Beam dynamics
publishDate 2020
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Чисельне моделювання багатопучкових систем за допомогою EL&ION-коду
Численное моделирование многопучковых систем с помощью EL&ION-кода
description Based on the tube method, taking into account the three second law for the current in each tube, the program EL&ION for preliminary rapid numerical analysis of the electron-optical system was developed, using which the system was developed for generating an ion beam of reactive gases with an energy of up to 50 keV and a current of 10…20 mA in the presence of high-density electron beam. На основі методу трубок з урахуванням закону трьох других для струму в кожній трубці розроблена програма EL-ІON попереднього швидкого чисельного аналізу електронно-оптичної системи, за допомогою якої була розрахована система формування пучка іонів реакційно-здатних газів з енергією до 50 кеВ і струмом 10…20 мА при наявності електронного пучка з високою густиною. На основе метода трубок с учетом закона трех вторых для тока в каждой трубке разработана программа EL-ION предварительного быстрого численного анализа электронно-оптической системы, с помощью которой была рассчитана система формирования пучка ионов реакционно-способных газов с энергией до 50 кэВ и током 10…20 мА при наличии высокоплотного электронного пучка.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/194534
citation_txt Numerical simulation of multibeam systems by EL&ION code / P.A. Martynenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 92-93. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT martynenkopa numericalsimulationofmultibeamsystemsbyelioncode
AT martynenkopa čiselʹnemodelûvannâbagatopučkovihsistemzadopomogoûelionkodu
AT martynenkopa čislennoemodelirovaniemnogopučkovyhsistemspomoŝʹûelionkoda
first_indexed 2025-11-24T03:05:51Z
last_indexed 2025-11-24T03:05:51Z
_version_ 1850839233807253504
fulltext ISSN 1562-6016. ВАНТ. 2020. №3(127) 92 NUMERICAL SIMULATION OF MULTIBEAM SYSTEMS BY EL&ION CODE P.A. Martynenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: martynenkopetr91@gmail.com Based on the tube method, taking into account the three second law for the current in each tube, the program EL&ION for preliminary rapid numerical analysis of the electron-optical system was developed, using which the system was developed for generating an ion beam of reactive gases with an energy of up to 50 keV and a current of 10...20 mA in the presence of high-density electron beam. PACS: 29.25.Ni INTRODUCTION Beams of accelerated electrons and ions are widely used in modern nuclear physics technologies. The de- velopment of new systems for charged particles acceler- ating, based on ideas proposed more than half a century ago, continues to be relevant for the creation of new electron and ion accelerators [1 - 3]. This work is de- voted to the study of the possibility of numerically cal- culating the formation system with a joint ion and high- perveance electron beam (HPEB) used in the model of a collective accelerator. The formation systems used for the injector part of the accelerator consist of many elec- trodes with complex configuration. Their choice is a difficult task in optimizing the beam parameters [4, 5]. MULTIBEAM SYSTEM SIMULATION The numerical calculation of the collective accelera- tor injectors leads to the formation system creation of the required parameter charged particle beams. The dif- ficulty is the calculation of the self-consistent state [6] of the joint flows of electrons and various types of ions obtained from ion sources, both plasma type and solid- state type [7]. The charged particle flows are modeled in an axi- symmetric electrode system. The influence of the intrin- sic magnetic field of the beams, ionization and secon- dary emission processes is neglected in the calculations. So as the computational time is reduced and it is possi- ble to compare the calculation results with experimental data both for a high-current electron injector and for a thermal emitter of alkali metal ions. The ion and elec- tron beam dynamics are calculated using the EL&ION code, which implements the current tube method for solving stationary self-consistent problems [8]. Using this method allows to solve such problems more eco- nomically in time, in contrast to the use of the particle in cells method [9]. A rectangular uniform grid was used in the simula- tion, with the number of cells 300100. The required number of current tubes and the dimensions of the spa- tial grid were selected from the condition of ensuring a given accuracy in calculating the perveance of flows. Thus the use of ~100 current tubes and 0.2 cm grid spacing allows one to achieve the calculation accuracy necessary for creating experimental samples of the high- perveance charged particle guns. An ion beam with energies up to 50 keV is injected through an opening in the cathode of the electron gun. The current of nitrogen ions can reach 30 mA [10]. Fig. 1 shows that the ions completely pass through the cathode into the space behind the anode of the electron gun, which is at zero potential and is connected to the drift tube. Fig. 1. The charge density distribution and trajectories of charged particles RESULTS The formation system calculation results of a con- vergent tubular beam were used in the designing and manufacturing of the electron gun for technological purposes. Fig. 2. The HPEB potential distribution and trajectories of charged particles The test results of the cathode assembly gun at a power pulse amplitude of up to 100 kV showed no breakdowns. The recorded amplitude current to the col- lector isolated from the anode of the gun coincided with the calculated value with good accuracy. The collector current was recorded by an oscilloscope by the voltage drop across the resistance of the collector grounding. According to the results of the calculation of the forma- tion system see Fig. 2, the location of the near cathode equipotential for the design of the electron gun with a control grid was determined. The experimental results showed the possibility of 100% modulation of the beam current at a frequency of less than 10 MHz without the use of an external RF generator [11]. As can be seen from Fig. 3, the presence of an ionic space charge in the HPEB crossover compensates the Coulomb forces of repulsion of electrons. Under conditions of ionic com- pensation, the intrinsic magnetic field of a high-current ISSN 1562-6016. ВАНТ. 2020. №3(127) 93 electron beam can significantly affect the motion of electrons and ions in the space behind anode, which leads to compression of the electron beam. Fig. 3. The charge density distribution and trajectories of HPEB CONCLUSIONS Experimental studies must be supplemented by nu- merical calculations of the electron-optical system in the presence of plasma near the axis, taking into account the action of the magnetic field generated by the high- current beam. The first version of the EL&ION program was writ- ten in the early 80's and was operated on a BESM-6 computer. In the early 90s, the program was adapted for personal computers with operating systems such as MS- DOS and WINDOWS. The program is connected to the well-known library of graphic output programs Grafor [12], adapted for computers using these systems. The computational time is heavily dependent on the proces- sor performance. The move to the 7th Generation Intel® Core ™ i7 Processors reduces this time by more than 5 times compared with the system of the same architec- ture, based on the Intel® Pentium® Processors. To visualize the results, a script was written in Python3 that implements the processing of data files using the mat- plotlib 3.0.3 library. Graphing is performed in the re- mote access operating mode on the server https://colab.research.google.com. REFERENCES 1. G.G. Aseev, A.G. Korostelev, G.G. Kuznetsova, A.G. Lymar’, P.A. Martynenko, N.A. Khizhnyak. To the calculation of an accelerating structure of an ion collective accelerator // Proceedings of the ΙΧ All-Union Meeting on charged particle acceleration, Dubna, September, 1985, v. II, p. 203-206. 2. N.A. Khizhnyak, A.G. Lymar. Status of the Kharkov’s Linear Collective Accelerator // Proceed- ings of the Second International Conference on ADTT and Applications, Kalmar, Sweden, June 3-7, 1996, v. 2, p. 1087-1089. 3. V.A. Balakirev, A.M. Gorban, I.I. Magda, V.E. No- vikov, I.N. Onishchenko, S.S. Pushkarev. Collective ion acceleration by a modulated high-current REB // Plasma Physics Reports. 1997, v. 23(4), p. 323-327. 4. P.A. Martynenko. Simulating multigun system with Langmuir law emission current // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2018, № 4, p. 27-29. 5. P.A. Martynenko. Multibeam system simulation // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2019, № 1, p. 168-171. 6. A.G. Lymar, P.A. Martynenko, N.A. Khizhnyak. Slozhnoe povedenie v modeli elektronnoy pushki s ter- mokatodom // Problems of Atomic Science and Technol- ogy. Series “Plasma Electronics and New Methods of Acceleration”. 1998, № 1, p. 79. 7. P.A. Martynenko. The forming system simulation for reactive gas ion source with decreased neutral gas inleakage // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2017, № 1, p. 152-154. 8. P.T. Kirstein, G.S. Kino, W.Е. Waters. Space- Charge Flow. Publication, New York, NY: “McGraw-Hill”, 1967, 537 p. 9. Hockney R., Eastwood J. Computer Simulation Us- ing Particles. Francis: IOP Publ. Ltd. 1988, 540 p. 10. A. Guglya, V. Drakin, A. Lymar, N. Stervoedov. High-current and broad-beam ion implanter // Vac- uum. 2003, v. 70, Issue 2, p. 353-358. 11. A.A. Bakumenko, V.V. Belikov, A.V. Zvyagintsev, V.I. Lyul'chenko, A.G. Lymar', P.A. Martynenko, A.V. Suryadnyj. Control-grid electron gun as a source of modulated electron beam for a collective accelerator // Voprosy atomnoj nauki i tekhniki. 1989, № 6(6), p. 84-85 (in Russian). 12. S.B. Bazarov, Yu.M. Bayakovsky, F.F. Seidalieva, A.Yu. Skachkov. Adaptation of software library GRAFOR for Windows and Linux: Preprint № 27, Inst. Appl. Math. the Russian Academy of Science. М. 2002 (in Russian). Article received 29.01.2020 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ МНОГОПУЧКОВЫХ СИСТЕМ С ПОМОЩЬЮ EL&ION-КОДА П.A. Мартыненко На основе метода трубок с учетом закона трех вторых для тока в каждой трубке разработана программа EL-ION предварительного быстрого численного анализа электронно-оптической системы, с помощью кото- рой была рассчитана система формирования пучка ионов реакционно-способных газов с энергией до 50 кэВ и током 10…20 мА при наличии высокоплотного электронного пучка. ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ БАГАТОПУЧКОВИХ СИСТЕМ ЗА ДОПОМОГОЮ EL&ION-КОДУ П.О. Мартиненко На основі методу трубок з урахуванням закону трьох других для струму в кожній трубці розроблена про- грама EL-ІON попереднього швидкого чисельного аналізу електронно-оптичної системи, за допомогою якої була розрахована система формування пучка іонів реакційно-здатних газів з енергією до 50 кеВ і струмом 10...20 мА при наявності електронного пучка з високою густиною.