On the multipurpose use of a portable neutron source

The possibility of creating a multipurpose complex for generating a reference field of thermal neutrons based on a portable neutron source (PNS) is considered. It has been shown that our method can be used to detect fissile materials without determining their isotopic composition during an inspectio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Kuplennikov, E.L., Vodin, A.N., Deiev, O.S., Kandybei, S.S., Olejnik, S.N., Stoyanov, A.F., Timchenko, I.S., Trubnikov, V.S., Tsymbal, V.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/194548
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the multipurpose use of a portable neutron source / E.L. Kuplennikov, A.N. Vodin, O.S. Deiev, S.S. Kandybei, S.N. Olejnik, A.F. Stoyanov, I.S. Timchenko, V.S. Trubnikov, V.A. Tsymbal // Problems of atomic science and tecnology. — 2020. — № 3. — С. 163-167. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194548
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1945482025-02-23T17:17:16Z On the multipurpose use of a portable neutron source Про багатоцільове використання портативного джерела нейтронів О многоцелевом использовании портативного источника нейтронов Kuplennikov, E.L. Vodin, A.N. Deiev, O.S. Kandybei, S.S. Olejnik, S.N. Stoyanov, A.F. Timchenko, I.S. Trubnikov, V.S. Tsymbal, V.A. Application of nuclear methods The possibility of creating a multipurpose complex for generating a reference field of thermal neutrons based on a portable neutron source (PNS) is considered. It has been shown that our method can be used to detect fissile materials without determining their isotopic composition during an inspection of the hand luggage of passengers, mail,etc. The PNS multipurpose complex will allow to indirectly indicating the possible presence of chemical explosives in the test samples, as well as cadmium and boron, which possibly hide fissile elements from detection. The paper gives recommendations on the use of the most effective instruments and equipment. Розглянута можливість створення багатофункціонального комплексу для генерування опорного поля теплових нейтронів на базі портативного джерела нейтронів (ПДН). Показано, що розробка може бути використана для виявлення матеріалів, що діляться, без визначення їх ізотопного складу при огляді ручної поклажі пасажирів, поштових відправлень і т. п. Крім того, комплекс ПДН дозволить побічно вказати на можливу присутність у досліджуваному об’ємі хімічної вибухової речовини, а також кадмію і бору, які можливо приховують елементи, що діляться, від виявлення. Дані рекомендації по застосуванню найбільш ефективних приладів та обладнання. Рассмотрена возможность создания многофункционального комплекса для генерации опорного поля тепловых нейтронов на основе портативного источника нейтронов (ПИН). Показано, что разработку можно использовать для обнаружения делящихся материалов без определения их изотопного состава при досмотре ручной клади пассажиров, почты и т. д. Кроме того, комплекс ПИН позволит косвенно указывать на возможное присутствие в исследуемом объеме химического взрывчатого вещества, а также кадмия и бора, которые, возможно, скрывают делящиеся элементы от обнаружения. Даны рекомендации по использованию наиболее эффективных инструментов и оборудования. 2020 Article On the multipurpose use of a portable neutron source / E.L. Kuplennikov, A.N. Vodin, O.S. Deiev, S.S. Kandybei, S.N. Olejnik, A.F. Stoyanov, I.S. Timchenko, V.S. Trubnikov, V.A. Tsymbal // Problems of atomic science and tecnology. — 2020. — № 3. — С. 163-167. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 07.85.Fv, 61.80.Cb https://nasplib.isofts.kiev.ua/handle/123456789/194548 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of nuclear methods
Application of nuclear methods
spellingShingle Application of nuclear methods
Application of nuclear methods
Kuplennikov, E.L.
Vodin, A.N.
Deiev, O.S.
Kandybei, S.S.
Olejnik, S.N.
Stoyanov, A.F.
Timchenko, I.S.
Trubnikov, V.S.
Tsymbal, V.A.
On the multipurpose use of a portable neutron source
Вопросы атомной науки и техники
description The possibility of creating a multipurpose complex for generating a reference field of thermal neutrons based on a portable neutron source (PNS) is considered. It has been shown that our method can be used to detect fissile materials without determining their isotopic composition during an inspection of the hand luggage of passengers, mail,etc. The PNS multipurpose complex will allow to indirectly indicating the possible presence of chemical explosives in the test samples, as well as cadmium and boron, which possibly hide fissile elements from detection. The paper gives recommendations on the use of the most effective instruments and equipment.
format Article
author Kuplennikov, E.L.
Vodin, A.N.
Deiev, O.S.
Kandybei, S.S.
Olejnik, S.N.
Stoyanov, A.F.
Timchenko, I.S.
Trubnikov, V.S.
Tsymbal, V.A.
author_facet Kuplennikov, E.L.
Vodin, A.N.
Deiev, O.S.
Kandybei, S.S.
Olejnik, S.N.
Stoyanov, A.F.
Timchenko, I.S.
Trubnikov, V.S.
Tsymbal, V.A.
author_sort Kuplennikov, E.L.
title On the multipurpose use of a portable neutron source
title_short On the multipurpose use of a portable neutron source
title_full On the multipurpose use of a portable neutron source
title_fullStr On the multipurpose use of a portable neutron source
title_full_unstemmed On the multipurpose use of a portable neutron source
title_sort on the multipurpose use of a portable neutron source
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2020
topic_facet Application of nuclear methods
url https://nasplib.isofts.kiev.ua/handle/123456789/194548
citation_txt On the multipurpose use of a portable neutron source / E.L. Kuplennikov, A.N. Vodin, O.S. Deiev, S.S. Kandybei, S.N. Olejnik, A.F. Stoyanov, I.S. Timchenko, V.S. Trubnikov, V.A. Tsymbal // Problems of atomic science and tecnology. — 2020. — № 3. — С. 163-167. — Бібліогр.: 20 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kuplennikovel onthemultipurposeuseofaportableneutronsource
AT vodinan onthemultipurposeuseofaportableneutronsource
AT deievos onthemultipurposeuseofaportableneutronsource
AT kandybeiss onthemultipurposeuseofaportableneutronsource
AT olejniksn onthemultipurposeuseofaportableneutronsource
AT stoyanovaf onthemultipurposeuseofaportableneutronsource
AT timchenkois onthemultipurposeuseofaportableneutronsource
AT trubnikovvs onthemultipurposeuseofaportableneutronsource
AT tsymbalva onthemultipurposeuseofaportableneutronsource
AT kuplennikovel probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT vodinan probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT deievos probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT kandybeiss probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT olejniksn probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT stoyanovaf probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT timchenkois probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT trubnikovvs probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT tsymbalva probagatocílʹovevikoristannâportativnogodžerelanejtronív
AT kuplennikovel omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT vodinan omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT deievos omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT kandybeiss omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT olejniksn omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT stoyanovaf omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT timchenkois omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT trubnikovvs omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
AT tsymbalva omnogocelevomispolʹzovaniiportativnogoistočnikanejtronov
first_indexed 2025-11-24T03:05:54Z
last_indexed 2025-11-24T03:05:54Z
_version_ 1849639362695790592
fulltext ISSN 1562-6016. ВАНТ. 2020. №3(127) 163 ON THE MULTIPURPOSE USE OF A PORTABLE NEUTRON SOURCE E.L. Kuplennikov, A.N. Vodin, O.S. Deiev, S.S. Kandybei, S.N. Olejnik, A.F. Stoyanov, I.S. Timchenko, V.S. Trubnikov, V.A. Tsymbal National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: kupl@kipt.kharkov.ua The possibility of creating a multipurpose complex for generating a reference field of thermal neutrons based on a portable neutron source (PNS) is considered. It has been shown that our method can be used to detect fissile mate- rials without determining their isotopic composition during an inspection of the hand luggage of passengers, mail, etc. The PNS multipurpose complex will allow to indirectly indicating the possible presence of chemical explosives in the test samples, as well as cadmium and boron, which possibly hide fissile elements from detection. The paper gives recommendations on the use of the most effective instruments and equipment. PACS: 07.85.Fv, 61.80.Cb 1. CREATION OF A REFERENCE NEUTRON FIELD Laboratory practice shows, that the most accessible and widely used devices for calibrating and studying the parameters of detectors are constructions based on ref- erence neutron fields of radionuclide sources. This is because by placing emitters in different moderating me- diums, it is possible to create a reference radiation field with different characteristics. A hydrogen-containing medium, most frequently polyethylene, is used as a moderator. The nomenclature of such sources is exten- sive. Their properties depend on the radioisotope used, core size, design, materials used, etc. Most often, two types of reference fields based on certified fast neutron emitters, such as 252Cf or 239Pu-В, are preferred. In [1], the 239Pu-Ве source of fast neutrons was used to determine the dose of thermal neutrons. It was placed in a polyethylene sphere with a diameter of 190 cm and with a cylindrical cavity in the center with a diameter of 58.5 mm and a height of 123 mm [2]. The thermal neu- trons flux density Ф at a distance R from the center of the sphere was calculated by the formula Ф = 0.11/(4R2). The ratio of the thermal neutrons flux to the total flux of the 239Pu-Ве source  was taken equal to 0.11 with an error of 7% [2]. Test measurements were carried out in an open 2 geometry above a concrete floor level at 150 cm height. To check the reproducibility of the results in different conditions and to exclude the influence of a geometric factor arising at short distances, the DKS-96 dosimeter sensor, was placed at distance R = 70, 150, and 300 cm. DKS-96 dosimeter calibrated in a way to have an error of  10%. For a given geometry condition one can treat the radioactive source and the detector as a point like objects and at the same time, the contribution of the dispersed radiation does not exceed 2%. Note that neutron sources were also created based on linear electron accelerators. For example, a facility for generating thermal 0.510-3…0.5 eV and epithermal neutrons 0.4 eV…20 keV [3], based on the use of de- layed fission neutrons, was proposed at the NSC KIPT [3]. Neutrons were obtained upon activation of a 238U target with 2% enrichment of 235U by an electron beam. After 3 minutes of irradiation, the sample becomes a source of delayed neutrons and is automatically dumped into the receiver of thermal and epithermal neutrons. A preliminary experiment was conducted on an electron beam of 20 MeV, with a power of 9 W. The delayed neu- tron flux density was 610-5 n∙cm-2∙s-1. The magnitude (2…3)109 n∙cm-2∙s-1 required for neutron capture therapy is planned by the authors by increasing the 235U enrich- ment to  20% and the beam power to 1.5…3 kW. In current work, it is proposed to obtain a thermal neutrons reference field based on a polyethylene mod- erator-sphere and a portable neutron source (PNS) [4, 5] under the condition of a stable neutron flux with accu- racy no worse than that of certified radioisotope sources. Note that, as in any other moderator, the ther- mal spectrum of PNS will be enriched in neutrons of higher energies, including (10 eV…5 keV) range. The principle of operation of PNS is as follows. Ac- celerated deuterons of the cascade accelerator are di- rected into a narrow ion guide, passing through which, the particles are focused on a thick 9Be target 1010 mm in size. Neutrons are generated as a result of the reaction 2H + 9Be → 10B + n. The length of the accelerating tube is  0.6 m. The distance between the exit point from the accelerator gap and the target is ≤ 0.4 m. The beam di- ameter on the target is  6.8 mm. The expected neutron intensity is 109 ns-1 at an angle of 4, the average en- ergy is 2.5 MeV. The advantage of this design is the absence of a powerful radiation source since neutrons are created only during the authorized inclusion of a cascade accel- erator. Also, the use of isotopes is much more expensive than the work of PNS. The main types of sources that are produced in Russia and their characteristics are given in [5, 6]. Since the expected yield flux of fast neutron from 9Be(d,n) reaction (about 109 ns-1) is higher than that of 239Pu-Ве (up to (5.001.00)107 ns-1) and also higher then 252Cf (2.1105…2.7107) ns-1, one can expect that the generation of the thermal neutron with the help of polyethylene sphere will be correspondingly higher. The main components of the PNS are shown in Fig. 1. The size of the polyethylene sphere can be estimated from an analysis of the energy dependence of the detec- tor sensitivity (EDoS) obtained by irradiating the sphere with an external certified radioisotope source, for exam- ple, 239Pu-Ве. Fig. 2 shows EDoS measured by the LiJ(Eu) crystal [7] as a function of the diameter of the polyethylene sphere and the neutron energy En. ISSN 1562-6016. ВАНТ. 2020. №3(127) 164 Fig. 1. Schematic view of PNS complex: 1  deuteron source; 2  the outer shell; 3  deuteron beam; 4  accelerating electrodes; 5  vacuum tube; 6  gradient rings; 7 – Elegaz; 8  vacuum pump; 9  ion channel; 10  water Fig. 2. EDoS for LiJ(Eu) detector as a function of En As we can see, at sphere diameter of about  20 cm, external neutrons with an average energy of  (1…4.5) MeV generates the maximum number of thermal neutrons in the center of the sphere. Similar dependencies were measured using various neutron counters, and also were calculated based on modern mathematical models. In particular, in [7], EDoS esti- mates have been done for detectors made from indium foils. The calculations were done also for proportional 3He(n,p)3H counter. The sensitivity matrix was calcu- lated using the MCNP and HADRON models. It turned out that in all cases, with a sphere diameter of  20 cm, the maximum number of thermal neutrons generated by the 239Pu-Ве source is observed in the center of the sphere. When the 239Pu-Ве radioisotope is placed in the center of the sphere, the PE layer for optimal neutron deceleration should be  20 cm. Since the average neu- tron energy of the PNS En  2.5 MeV is in the region of the maximum EDoS, the optimal moderator layer neces- sary to obtain the highest number of thermal neutrons in the center of the sphere should be about 20 cm. To minimize the leakage of thermal neutrons from the sphere, it should be surrounded by a neutron reflec- tor: D2O heavy water, 9Be beryllium, or 12C graphite. The most practical and relatively cheap material is 12C. In the process of collisions with nuclei, a thermal neu- tron has 999 chances out of 1000 to scatter and only 1 chance out of a thousand to be absorbed [8]. The reflec- tivity of carbon at a thickness of 40 cm is 0.892. There- fore, a layer of ≤ 40 cm is sufficient for most of the thermal neutrons to be reflected. To create a reference field of thermal neutrons based on a polyethylene moderator-sphere and PNS, it is nec- essary to take the following steps: a) to develop and create a neutrons moderator, including a 12C reflector; b) estimate the deceleration, absorption, and yield of neutrons from the polyethylene sphere, including the reflector; c) find the analytical dependence of the flux density of the thermal neutrons depending on the dis- tance to the irradiated object. Testing of the prototype should be done at the experimental area of RDC “Ac- celerator” NSC KIPT after preparation and implementa- tion of all necessary technical and economic require- ments. 2. ESTIMATION OF DECAYING MATERIAL DETECTION PROBABILITY A wide network of transport highways, a significant number of boundary checkpoints increases the chance of unauthorized movement of nuclear materials, explo- sives, drugs. Only the introduction of modern detection systems will allow us to successfully counteract the smuggling of prohibited goods. Special attention at air- port custom terminals is paid to detection of fissile ma- terials, explosives, drugs (since approximately half of the total number of incidents of the movement of pro- hibited substances is their placement in hand luggage [9]). There are many nuclear-physical methods for solv- ing this problem, and one of them is the activation of cargo by thermal neutrons, registration, and analysis of induced reaction products. Typically, to obtain the thermal neutrons flux neces- sary to trigger a forced decay of nuclear materials, stan- dard fast neutrons emitters based on the (,n) reaction of spontaneous 252Cf decay are used. The second option is the pulse generators. The (,n)-emitters have a con- tinuous spectrum and a high level of -background. These sources in various modifications are used in many fields of modern science and technology [5, 10]. Existing non-destructive testing methods are aimed, first of all, at determining the mass and composition of decaying materials in confined volumes that cannot be opened. If we consider the installations of the first line of defense used to prevent the circulation of fissile ele- ments (without determining the isotopic content), then their design and operation must satisfy the following basic conditions [11]:  during the measurement time (about 5…7 s), it is necessary to obtain the information concerning the pres- ence of decaying materials in the inspected object with a confidence level of 99.9%;  the output of the source (107…108) ns-1 (deter- mined by the radiation situation of the environment);  option to turn off the radiation source between working cycles;  impossibility of radioactive contamination even in the case of the destruction of a neutron source;  the simplicity of design, the small size of radiation protection and low cost of installation; ISSN 1562-6016. ВАНТ. 2020. №3(127) 165  acceptable operating time without replacing the radiation source;  absence of special requirements for the storage room of radiation source. Conclusions from [11]: a) For the conditions described above, there is no ra- diation hazard associated with the exposure of baggage materials. b) Ideally, the probability of detection should not depend on the position of decaying material inside the baggage. But in real conditions, there is some no uni- form distribution of the flux density of the TN due to the position of the source relative to the inspected vol- ume. However, according to estimates, the field gradient of the TN is small. c) Calculations and experimental studies have con- firmed the possibility of the creation of a facility for the detection of decaying nuclei using hydrogen-containing moderators and pulsed neutron generators with an out- put of 107…108 s-1. The content of 235U, and 239Pu with a mass of 5…10 g can be detected in 5…7 s of operation with a probability of 99.9%”. The requirements described above for the successful operation of the facility for the determination of decay- ing materials are fully consistent with the operating modes of PNS. Therefore, this article focuses on the possibility of detection of radioactive nuclides 233,235U and 239Pu, since these are the main components of nu- clear reactors and the main components of weapons of mass destruction. Neutrons of any energy can trigger the decay of nuclei, but the largest cross-section corre- sponds to TN. At En = 0.025 eV: (5264), (5816), and (75110) barn (b), respectively, which is hundreds of times higher than the similar values for fast neutrons. Interacting with a thermal neutron, the nucleus divides, emitting in a time of  10…14 s, instantaneous neutrons with maximum energy in the range of 0.6…0.8 MeV, the average energy of 2 MeV and -quanta. The aver- age number of neutrons for one decay event for En = 0.025 eV: 2.50, 2.43, 2.84 [12]. The energy spec- trum of neutrons from decays of 233 U, 235U, and 239Pu is shown in Fig. 3. These spectra are close to each other [10, 12]. The experimental points are well described by the distribution )/()( TE n neETN  , (1) where T is the temperature of the spectrum. In this case, T = 1.31, 1.29, and 1.33, respectively. Fig. 3. The energy spectrum of neutrons from decay The proposed experiment is a sequential series of procedures: 1. A source of FN from PNS with an intensity of 109 ns-1 is placed in the center of the polyethylene sphere. 2. The neutron flux slowed down to the thermal en- ergies and directed to the object under study. 3. If there are decaying nuclei in the volume, they interact with TN, as a result of this interaction the nuclei fall apart, forming decay fragments, instantaneous and delayed neutrons, -particles, antineutrinos, -quanta. On average, from 7 to 10 -quanta are formed per one division, and their average energy is about 1 MeV. The number of delayed neutrons, normally, is  1% of the number of instant ones. They are emitted by decay products over a period from hundreds of milliseconds up to 54…56 s. Their average energy is small. For ex- ample, for 235U it is equal to 0.45 MeV. Most nuclear materials emit 10 times more -quanta than neutrons, which sometimes requires the use of a protective shield. When a detector is irradiated with neutrons with energy of 1 MeV in the presence of - radiation with an energy of 1 MeV, protection from the lead of 5 cm thickness absorbs  0.1% of neutrons and 90% of -quanta [13]. As mentioned above, the instantaneous neutron flux should first be slowed down, and only then registered. For slowing down of fast neutrons with energies 1…2 MeV to thermal energies, it is recommended to use polyethylene (for gas-filled boron or 3He counters this can be a cylinder with a diameter of  13 cm [14]). An important property of PE is that it accumulates most of the thermal neutrons at a certain depth. Particles have already experienced enough collisions and lost almost all of their kinetic energy. If the detector is placed in this region, the probability of detecting particles be- comes optimal. The counter is shielded from the back- ground of the thermal neutrons by a thin layer of cad- mium. Cadmium strongly absorbs neutrons with energy ≤ 0.4 eV and weakly with En  0.6 eV [15]. Boron can be also used for this purpose, but cadmium is more ef- fective in the case of purely thermal neutrons, while boron shields neutrons were better in the energy range from 0.1 to 10 eV [15]. Widely used counters for detecting TN are devices based on a LiJ(Eu) crystal or a proportional 3He detec- tor. Detector based on LiJ(Eu) has the following pa- rameters: an energy resolution of 9…10% for thermal neutrons peak, luminescence time is  1 μs, wavelength of the emitted light is max = 460 nm, and time resolu- tion is  0.3 μs. Scintillators are usually made in the form of washers with a diameter of 10…40 mm and a thickness of d  2…40 mm, which allows them to be placed directly on the photomultiplier tube. Particle de- tection efficiency () for natural natLi with a thickness of d = 1 cm is   69% and  90% for d = 2 cm. When enriched with 6Li 94…96%,   98% [16]. Due to the high cross-section for the interaction of for thermal neu- trons with 3He 5330 b, proportional 3He counters are very effective for neutron detection. It has a sensitivity to -quanta with an energy of 1 MeV is of the order of 0.0001. 3He-detectors are relatively easy to operate and ISSN 1562-6016. ВАНТ. 2020. №3(127) 166 highly stable. They withstand irradiation to a fluence of  1013 Bncm-2 without serious radiation damage and provide discrimination of -fields with a dose rate up to  1 Rh-1 [14]. To register neutrons, it is useful to create a set of de- tectors that form a closed system around the measuring chamber. For example, in [11], 18 helium counters were used. In this case, at the first stage, the simplest set can be composed of three long metal proportional 3Не-counters SNM-66. Diameter 25.5 mm, length 601.5 mm, operating voltage 1600 V, efficiency to TN 80% [17]. This sample was selected taking into account the average size of air- plane hand luggage allowed 554020 cm (in length, width, height) or 115 cm in the sum of three measure- ments [18]. Among the 233,235U and 239Pu nuclei, the most impor- tant in terms of practical use is 239Pu. The demand for it is constantly growing  at the beginning of the 21-st century, the annual net increase in plutonium was  100 t. The critical mass of a sphere made of “pure” 239Pu metal with a 9Ве reflector 32 cm thick is 2.47 kg only [19]. By “pure” is meant the composition: 239Pu (90…95)%, 240Pu  (1…7)%, the content of other iso- topes does not exceed tenths of a percent. At the initial stage of the experimental study, 239Pu is more promising than 233,235U due to the maximum cross- section, the largest neutron yield per one decay event, and the presence of resonance in the cross-section at an energy of 0.3 eV [12] (Fig. 4). Fig. 4. Decay cross-section of 235,238U, 239Pu, and 232Th as a function of neutron energy. Dotted line  resonance region Creating the complex, the main efforts of the first stage of work will be concentrated at the justification of the use of certain structural elements (with the help of modern software), their sizes and location in space; de- velopment and assembly of a thermal neutrons genera- tor based on PNS; estimation of conditions for detecting a minimum number of basic decaying elements; creat- ing reliable radiation protection. It is planned to carry out commissioning, testing and preliminary commis- sioning of the complex at the test system, the main ele- ments of which are the cascade generator itself, PE moderator, 12C reflector, a set of sensitive detectors and radiation protection. The next stage of work will be ex- periments to detect the minimum amount of nuclear materials in 5…7 s. The work also needs to find out the probability of detecting prohibited materials and false alarm in %. 3. ADDITIONAL OPTIONS Technical advances in the miniaturization of explo- sive materials (EM) make the task of their detection very important. The main unmasking sign of EM is the certain composition of its components: hydrogen, car- bon, nitrogen, and oxygen, which comes in a certain ratio of the concentration of individual nuclei: O/N 1-3, C/N 0.5-2.5, H/ N 1-2. The main component of the structural formula is nitrogen (1021 cm-3). For example, TNT contains 18% nitrogen, tetryl 24%, hexogen 37%, octogen 39%, nitroglycerin 18%, etc. The nitrogen con- tent in the natural mixture is 99.63%. One possible option to solve the problem is to use the radiation capture of TN (TNA technology). To de- termine the concentration of 14N nuclei, the reaction 14N(n,)15N is used. The -radiation of a daughter nu- cleus with the energy of 10.824 MeV has a high inten- sity of 14% per neutron captured. The -quanta are fairly reliably recorded at a relatively low neutron flux intensity of 6107 ns-1. To test the technology, two prototypes were created. In one of them, 252Cf was used. The other was a Kaman A-711 type neutron generator (reaction (d,d)). TNA tests were successful, which led to many years of suc- cessful usage of it at all US airports. In 1996, over 106 pieces of luggage were checked. The disadvantage of the method [9, 20] is the ability to detect nitrogen only. Also, this method is suffering from the presence of in- terference from the uncontrolled contribution of - quanta Е = 10038 and 9298 keV of 58,55Fe isotopes from related objects. More promising future technology is based on fast neutrons and nuclear resonance absorption. The decaying materials can be smuggled through control points using coatings that absorb TN (boron, cadmium). An alternative detection system should be used. In the 10B(n, )7Li reaction, -quanta are emitted with an energy of 477.6 keV [16] (10B capture cross- section is 4010 b). The thermal neutrons capture cross- section of natural natCd  2550 b is mainly due to the 113Cd isotope (12.3%), the cross-section of this isotope is about 20.000 b. In the reaction 113Cd(n,)114Cd, sev- eral gamma-lines are generated. The most intense is Е = 558.6 keV [21]. In this particular case, the most suitable - spectrometer would be a planar detector made of high- purity germanium. It has the best energy resolution and is preferred for detailed spectrometry. Radiation damage manifests itself only starting from an intense neutron flux of ≥ 109 ncm-2. CONCLUSIONS A multifunctional complex for generating a reference field of thermal neutrons based on a portable neutron source is proposed. The possibility of detection of decay- ing materials without determining their isotopic composi- tion during the inspection of hand luggage of passengers, mail, etc is discussed. The complex allows to indirectly indicate the possible presence of chemical explosives, also cadmium or boron, in the test volume, which are designed to hide decaying elements from detection. ISSN 1562-6016. ВАНТ. 2020. №3(127) 167 REFERENCES 1. Yu.V. Mokrov, S.V. Morozova. The use of a spheri- cal albedo system for correcting the readings of al- bedo dosimeters in the neutron fields of the JINR phasotron // Particles and Nuclei, Letters. 2014, v. 11 (2), p. 219-232. 2. GOST 8.355-79. Neutron radiometers. Methods and means of verification. M.: “Publishing House of Standards”, 1979. 3. V.I. Kasilov, et al. Generation of thermal and epi- thermal neutrons on a linear electron accelerator for nuclear medicine // EEJP. 2016, v. 3, p. 64-72. 4. A.F. Stoyanov, A.N. Dovbnya, V.A. Tsymbal. On the possibility of using a portable neutron generator for the treatment of oncological diseases // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2017, № 6, p. 172-174. 5. A.N. Dovbnya V.A. Tsymbal, A.F. Stoyanov, et al. Numerical modeling of the effects of neutron flux on organic tissues // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2015, № 6, p. 165-168. 6. Guidelines for the customs control of fissile radioac- tive materials. Appendix 10. https://zakonbase. ru/con-tent/part/165705?print=1. 7. K. Beckurz, C. Wirtz. Neutron physics. M.: “Atom- izdat”, 1968, 456 p. 8. A.V. Sannikov. Development of neutron radiation spectrometry methods at large proton accelerators // SSC RF IHEP. 2006-21, p. 23. 9. G.V. Yakovlev, G.A. Kotelnikov, V.P. Zakharova. Methods for the detection of chemical explosives // Nucl. Tech. Abroad. 1997, v. 3, p. 11-19. 10. S.G. Plachkova. ENERGY. Book 4. 2.1. Physical fundamentals of nuclear reactors. http://energetika. in.ua /ru/books/book-4. 11. V.L. Romodanov et al. Detection of fissile materials in facilities with pulsed neutron sources // Atomic Energy. 2006, v. 101, p. 125-130. 12. I.N. Beckman. Nuclear physics. Lecture 17. Fission of nuclei. p. 24. http://profbeckman.narod.ru/YadFiz.htm 13. T.V. Crane, M.P. Baker. Neutron detectors // Passive non-destructive analysis of nuclear materials. 1991, p. 377-409. 14. J. Sprinkle. Devices for recording the total neutron flux // Passive non-destructive analysis of nuclear materials. 1991, p. 439-461. 15. N.A. Vlasov. Neutrons. M.: “Science”, 1971, 462 p. 16. M. Gaisinsky, J. Adly. Radiochemical dictionary of elements. M.: “Atomizdat”, 1968, 255 p. 17. M.L. Lamb. Radiation receivers and detectors. M., 2017. 18. https: //www.skyscanner/ru/news/pravila-provozaru- chnoi-kladi 19. G.A. Kotelnikov, G.V. Yakovlev. Improving the definition of detection of explosives by characteristic nuclear reactions // PTE. 2002, v. 4, p. 128-129. 20. D.S. McGregor, J.T. Lindsay, R.W. Olsen. Thermal neutron detection using CdZnTe semiconductor de- tectors // NIM in Phys. Res. A. 1996, v. 381, p. 498- 501. Article received 30.03.2020 О МНОГОЦЕЛЕВОМ ИСПОЛЬЗОВАНИИ ПОРТАТИВНОГО ИСТОЧНИКА НЕЙТРОНОВ Э.Л. Купленников, А.Н. Водин, А.С. Деев, С.С. Кандыбей, С.Н. Олейник, А.Ф. Стоянов, И.С. Тимченко, В.С. Трубников, В.А. Цымбал Рассмотрена возможность создания многофункционального комплекса для генерации опорного поля те- пловых нейтронов на основе портативного источника нейтронов (ПИН). Показано, что разработку можно использовать для обнаружения делящихся материалов без определения их изотопного состава при досмотре ручной клади пассажиров, почты и т. д. Кроме того, комплекс ПИН позволит косвенно указывать на воз- можное присутствие в исследуемом объеме химического взрывчатого вещества, а также кадмия и бора, ко- торые, возможно, скрывают делящиеся элементы от обнаружения. Даны рекомендации по использованию наиболее эффективных инструментов и оборудования. ПРО БАГАТОЦІЛЬОВЕ ВИКОРИСТАННЯ ПОРТАТИВНОГО ДЖЕРЕЛА НЕЙТРОНІВ Е.Л. Купленніков, О.М. Водін, О.С. Дєєв, С.С. Кандибей, С.М. Олійник, О.Ф. Стоянов, І.С. Тімченко, В.С. Трубніков, В.О. Цимбал Розглянута можливість створення багатофункціонального комплексу для генерування опорного поля те- плових нейтронів на базі портативного джерела нейтронів (ПДН). Показано, що розробка може бути вико- ристана для виявлення матеріалів, що діляться, без визначення їх ізотопного складу при огляді ручної по- клажі пасажирів, поштових відправлень і т. п. Крім того, комплекс ПДН дозволить побічно вказати на можливу присутність у досліджуваному об’ємі хімічної вибухової речовини, а також кадмію і бору, які можливо приховують елементи, що діляться, від виявлення. Дані рекомендації по застосуванню найбільш ефективних приладів та обладнання.