Born values for vector and tensor asymmetries in electron-deuteron scattering

Using the previously obtained analytic form factors for the deuteron wave function in the coordinate representation for the nucleon-nucleon potential Argonne v18, are calculated the Born values for vector AᴸB, AᵀB and tensor AᴸᴸB, AᵀᵀB, AᴸᵀB asymmetries, which are necessary for estimating radiative...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2020
Автор: Zhaba, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/194559
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Born values for vector and tensor asymmetries in electron-deuteron scattering / V.I. Zhaba // Problems of atomic science and tecnology. — 2020. — № 5. — С. 19-22. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194559
record_format dspace
spelling Zhaba, V.I.
2023-11-27T14:16:05Z
2023-11-27T14:16:05Z
2020
Born values for vector and tensor asymmetries in electron-deuteron scattering / V.I. Zhaba // Problems of atomic science and tecnology. — 2020. — № 5. — С. 19-22. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 03.65.Nk, 13.40.Gp, 13.88.+e, 21.45.Bc
https://nasplib.isofts.kiev.ua/handle/123456789/194559
Using the previously obtained analytic form factors for the deuteron wave function in the coordinate representation for the nucleon-nucleon potential Argonne v18, are calculated the Born values for vector AᴸB, AᵀB and tensor AᴸᴸB, AᵀᵀB, AᴸᵀB asymmetries, which are necessary for estimating radiative corrections to polarization observables in elastic electron-deuteron scattering in lepton variables. The momentum-angular dependence for vector and tensor asymmetries is illustrated in 3D format. Each component of the asymmetry has its own peculiarity of the form depending on the values of the scattering angle or momentum of the particle.
З використанням раніше отриманих коефіцієнтів аналітичної форми хвильової функції дейтрона в координатному представленні для нуклон-нуклонного потенціалу Argonne v18 розраховані борнівські значення векторних AᴸB, AᵀB, і тензорних AᴸᴸB, AᵀᵀB, AᴸᵀB асиметрій, необхідні для оцінки радіаційних поправок до поляризаційних спостережуваних в пружному електрон-дейтронному розсіянні в лептонних змінних. Імпульсно-кутова залежність для векторних і тензорних асиметрій проілюстрована в форматі 3D. Кожна компонента асиметрії має свою особливість форми в залежності від значень кута розсіяння або імпульсу частинки.
С использованием ранее полученных коэффициентов аналитической формы волновой функции дейтрона в координатном представлении для нуклон-нуклонного потенциала Argonne v18 рассчитаны борновские значения векторных AᴸB, AᵀB, и тензорных AᴸᴸB, AᵀᵀB, AᴸᵀB асимметрий, необходимые для оценки радиационных поправок к поляризационным наблюдаемым в упругом электрон-дейтронном рассеянии в лептонных переменных. Импульсно-угловая зависимость для векторных и тензорных асимметрий проиллюстрирована в формате 3D. Каждая компонента асимметрии имеет свою особенность формы в зависимости от значений угла рассеяния или импульса частицы.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Nuclear physics and elementary particles
Born values for vector and tensor asymmetries in electron-deuteron scattering
Борнівські значення векторних і тензорних асиметрій в електрон-дейтронному розсіянні
Борновские значения векторных и тензорных асимметрий в электрон-дейтронном рассеянии
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Born values for vector and tensor asymmetries in electron-deuteron scattering
spellingShingle Born values for vector and tensor asymmetries in electron-deuteron scattering
Zhaba, V.I.
Nuclear physics and elementary particles
title_short Born values for vector and tensor asymmetries in electron-deuteron scattering
title_full Born values for vector and tensor asymmetries in electron-deuteron scattering
title_fullStr Born values for vector and tensor asymmetries in electron-deuteron scattering
title_full_unstemmed Born values for vector and tensor asymmetries in electron-deuteron scattering
title_sort born values for vector and tensor asymmetries in electron-deuteron scattering
author Zhaba, V.I.
author_facet Zhaba, V.I.
topic Nuclear physics and elementary particles
topic_facet Nuclear physics and elementary particles
publishDate 2020
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Борнівські значення векторних і тензорних асиметрій в електрон-дейтронному розсіянні
Борновские значения векторных и тензорных асимметрий в электрон-дейтронном рассеянии
description Using the previously obtained analytic form factors for the deuteron wave function in the coordinate representation for the nucleon-nucleon potential Argonne v18, are calculated the Born values for vector AᴸB, AᵀB and tensor AᴸᴸB, AᵀᵀB, AᴸᵀB asymmetries, which are necessary for estimating radiative corrections to polarization observables in elastic electron-deuteron scattering in lepton variables. The momentum-angular dependence for vector and tensor asymmetries is illustrated in 3D format. Each component of the asymmetry has its own peculiarity of the form depending on the values of the scattering angle or momentum of the particle. З використанням раніше отриманих коефіцієнтів аналітичної форми хвильової функції дейтрона в координатному представленні для нуклон-нуклонного потенціалу Argonne v18 розраховані борнівські значення векторних AᴸB, AᵀB, і тензорних AᴸᴸB, AᵀᵀB, AᴸᵀB асиметрій, необхідні для оцінки радіаційних поправок до поляризаційних спостережуваних в пружному електрон-дейтронному розсіянні в лептонних змінних. Імпульсно-кутова залежність для векторних і тензорних асиметрій проілюстрована в форматі 3D. Кожна компонента асиметрії має свою особливість форми в залежності від значень кута розсіяння або імпульсу частинки. С использованием ранее полученных коэффициентов аналитической формы волновой функции дейтрона в координатном представлении для нуклон-нуклонного потенциала Argonne v18 рассчитаны борновские значения векторных AᴸB, AᵀB, и тензорных AᴸᴸB, AᵀᵀB, AᴸᵀB асимметрий, необходимые для оценки радиационных поправок к поляризационным наблюдаемым в упругом электрон-дейтронном рассеянии в лептонных переменных. Импульсно-угловая зависимость для векторных и тензорных асимметрий проиллюстрирована в формате 3D. Каждая компонента асимметрии имеет свою особенность формы в зависимости от значений угла рассеяния или импульса частицы.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/194559
citation_txt Born values for vector and tensor asymmetries in electron-deuteron scattering / V.I. Zhaba // Problems of atomic science and tecnology. — 2020. — № 5. — С. 19-22. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT zhabavi bornvaluesforvectorandtensorasymmetriesinelectrondeuteronscattering
AT zhabavi bornívsʹkíznačennâvektornihítenzornihasimetríivelektrondeitronnomurozsíânní
AT zhabavi bornovskieznačeniâvektornyhitenzornyhasimmetriivélektrondeitronnomrasseânii
first_indexed 2025-11-24T15:54:11Z
last_indexed 2025-11-24T15:54:11Z
_version_ 1850849297919115264
fulltext BORN VALUES FOR VECTOR AND TENSOR ASYMMETRIES IN ELECTRON-DEUTERON SCATTERING V. I. Zhaba∗ Uzhhorod National University, 88000 Uzhhorod, Ukraine, Voloshin Str. 54 (Received March 13, 2019) Using the previously obtained analytic form factors for the deuteron wave function in the coordinate representation for the nucleon-nucleon potential Argonne v18, are calculated the Born values for vector AL B , A T B and tensor ALL B , ATT B , ALT B asymmetries, which are necessary for estimating radiative corrections to polarization observables in elastic electron-deuteron scattering in lepton variables. The momentum-angular dependence for vector and tensor asymme- tries is illustrated in 3D format. Each component of the asymmetry has its own peculiarity of the form depending on the values of the scattering angle or momentum of the particle. PACS: 03.65.Nk, 13.40.Gp, 13.88.+e, 21.45.Bc 1. INTRODUCTION A deuteron can be used as a target for an electron beam or as a particle that is scattered on a proton and nuclei. For example, in paper [1], results are presented for spin-dependent electron scattering on polarized protons and deuterons for the BLAST ex- periment, carried out at the MIT-Bates Linear Accel- erator Center. The paper [2] presents the results of a study for spin observables in dp- scattering and test- ing T -invariance in applying the modified Glauber theory. In [3] the full set of deuteron analyzing pow- ers in elastic dp-scattering at 190MeV/nucleon is in- dicated. In [4] proton and deuteron analyzing powers and 10 spin correlation coefficients were measured for elastic p+d scattering at an energy of bombarding protons of 135 and 200MeV . In this paper, analyti- cal forms of DWF are used for theoretical calculations of the Born values of vector and tensor asymmetries, which are necessary for estimating radiative correc- tions to polarization observables in elastic electron- deuteron scattering in lepton variables [5]. For nu- merical calculations used the realistic phenomenolog- ical potential of the Argonne group – Argonne v18. 2. THE VECTOR AND TENSOR ASYMMETRIES The task of studying the lepton radiative corrections in elastic electron-deuteron scattering remains rele- vant in recent years [6]. In order to obtain formulas for radiative correc- tions to the polarization observables for the reaction e−(k1) + d(p1) → e−(k2) + d(p2), it is necessary to parameterize the state of polarization of the target in the definitions of the 4-moment of the particles in this reaction [5]. The 4-vector sµ of deuteron polarization and the quadrupole polarization tensor pµν describe the polarization state of the target. For the polariza- tion state, this parametrization depends on the di- rections along which the longitudinal and transverse polarization components of the deuteron in the fixed frame are determined. The quantity sµ describes the vector polarization of the deuteron. Five Born values of vector AL B , AT B and tensor ALL B , ATT B , ALT B asymmetries were considered when searching for radiative corrections to polarization ob- servables in elastic ed- scattering in leptonic variables [5]. The spin-dependent parts of the cross-section are determined by the vector polarization of the initial deuteron and by the longitudinal polarization of the electron beam [5, 7] dσL B dp2 = − πα2 4τV 2 2− ρ ρ √ ρ(4τ + ρ)G2 M ; dσT B dp2 = −πα2 V p2 √ (4τ + ρ)c τ GMG, where G = 2GC + 2 3 ηGQ; c = 1− ρ− ρτ ; η = P 2 4M2 D ; ρ = p2 V ; τ = M2 D V . In the laboratory system, these expressions for the cross-sections allow one to write values for asymme- tries (or the spin correlation coefficients) in elastic ed-scattering in the Born approximation [7] dσL B dp2 = π ε22 σNS √ (1 + η)(1 + η sin2 φ) tanφ cscφG2 M ; dσT B dp2 = 2 π ε22 σNS √ η(1 + η) tanφGM ( GC + η 3 GQ ) , ∗Corresponding author E-mail address: victorzh@meta.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2020, N5(129). Series: Nuclear Physics Investigations (74), p.19-22. 19 where ε2 are the energy of the scattered electron; GC(p), GQ(p), GM (p) are deuteron form factors; φ = θe/2; θe is the electron scattering angle. These two vector asymmetries are formed due to the vector polarization of the deuteron target (respec- tively, the longitudinal and transverse directions of the spin 4-vectors) and the longitudinal polarization of the electron beam [5] AL B = −η √ (1 + η)(1 + η sin2 φ) tanφ cscφG2 MI−1 0 ; (1) AT B = −2 √ η(1 + η) tanφGM ( GC + η 3 GQ ) I−1 0 , (2) where I0 = A+B tan2 φ. The ratio between the vector longitudinal and vector transverse polarization asymmetries is written in the form [7] AL B AT B = dσL B/dσB dσT B/dσB = 2− ρ 4 √ ρ cτ GM G (3) or in the laboratory system [5] AL B AT B = √ η(1 + η sin2 φ) cscφ GM G . (4) The 4-vector for a tensor-polarized deuteron tar- get is written as s(I)µ = 2εµλρσp1λk1ρk2σ V √ V cρ at I = L, T, N. In the Born approximation, part of the cross- section depends on the tensor polarization of the deuteron target [5, 7] dσp B dp2 = dσLL B dp2 RLL+ dσTT B dp2 (RTT −RNN )+ dσLT B dp2 RLT , where are the three components for this section: dσLL B dp2 = πα2 p4 2cη × × { 8GCGQ + 8 3 ηG2 Q + 2c+ 4τρ+ ρ2 2c G2 M } ; dσTT B dp2 = πα2 p4 2cηG2 M ; dσLT B dp2 = πα2 p4 4η(2− ρ) √ cρ τ GQGM . In the laboratory system these expressions for the cross-sections lead to the following three tensor asymmetries (or analyzing capabilities) in elastic ed- scattering, that were induced by tensor polarization of the deuteron target and the unpolarized electron beam [7] dσp B dp2 = π ε22 σNS [SLLRLL+STT (RTT−RNN )+SLTRLT ], or this formula is presented in [5] as I0A p B = ALL B RLL +ATT B (RTT −RNN ) +ALT B RLT , where ALL B , ATT B , ALT B are the tensor polarizations asymmetries: ALL B = 1 2 { 8ηGCGQ + 8 3 η2G2 Q+ +η [ 1 + 2(1 + η) tan2 φ ] G2 M } I−1 0 ; (5) ATT B = 1 2 ηG2 MI−1 0 ; (6) ALT B = −4η √ η + η2 sin2 φ secφGQGMI−1 0 . (7) Between the components Sij and Aij B there is the following relationship (π/ε22)σNSSij = Aij B/I0. 3. CALCULATIONS In paper [8] for research of radiative corrections to the polarization observed in elastic ed- scattering in leptonic variables have been calculated the Born val- ues of vector and tensor asymmetries. The deuteron wave functions in coordinate representation for eight nucleon-nucleon potentials (Nijm1, Nijm2, Nijm93, Reid93, Argonne v18, OBEPC, MT and Paris) were applied for numerical calculations of these asymme- tries. The momentum-angular dependence of val- ues vector Ai B(p, θ) and tensor Aij B(p, θ) asymme- tries have been also evaluated in 3D format only for Reid93 potentials. Due to the fact that in [8] the values of the angular dependence of these five asym- metries for the Argonne v18 potential are calculated, therefore, in this paper, only the momentum-angular dependence of the asymmetries will be calculated. The deuteron wave function (DWF) in the coordi- nate representation for the phenomenological realistic nucleon-nucleon potential Argonne v18 in analytical form [9] is used for numerical calculations  u(r) = r3/2 ∑N i=1 Ai exp(−air 3) w(r) = r ∑N i=1 Bi exp(−bir 3). (8) The coefficients of DWF for potential Argonne v18 are given in [9]. In the laboratory system, the Born values of the vector (1), (2) and tensor (5)-(7) asymme- tries are determined by the deuteron form factors. In turn, the deuteron form factors depend on the DWF in the coordinate representation (see [10, 11]). 20 Fig.1. The vector asymmetry Fig.2. The vector asymmetry Fig.3. The tensor asymmetries Fig.4. The tensor asymmetries Fig.5. The tensor asymmetries The Figs.1-5 display momentum-angular depen- dence in 3D format for vector Ai B(p, θ) and tensor Aij B(p, θ) asymmetries, which are calculated for for DWF (8) for Argonne v18 potential. For vector asymmetry AL B (see Fig.1), the charac- teristic plane at small angles up to 70 degrees and a rapid decrease at large scattering angles. According to Fig.2 the vector asymmetry AT B forms a kind of ”tray”. As seen in Figs.3 and 4 for tensor asymmetries ALL B and ATT B there is a hump (peak) near 3.7 fm-1 in the range of angles 0-180 degrees. For the tensor asymmetry ALT B (see Fig.5), on the contrary, there is a pit. 4. CONCLUSIONS The previously obtained coefficients of the analytical form of the deuteron wave function (8) in the coordi- nate representation for the phenomenological realis- tic nucleon-nucleon potential Argonne v18 calculated the set of Born values for vector AL B, A T B and tensor ALL B , ATT B , ALT B asymmetries. These values for asym- metries are necessary for the subsequent estimating of radiative corrections to polarization observables in elastic ed- scattering in lepton variables [5]. As shown in Figs.1-5 each component of the vector and tensor asymmetries has its own peculiarity of the form depending on the values of the scattering angle or the momentum of the particle. The aforecited and reviewed vector and tensor asymmetries (the spin cor- relation coefficients) can be compared with two sets of components for cross-sections [5]: dσβ B dp2 = VβA(−θ) dσA B dp2 atA = L, T andβ = l, t; dσβ B dp2 = TβA(−θ) dσA B dp2 atA = LL, TT andβ = ll, tt, lt for polarization 4-vectors s(l)µ = 2τk1µ − p1µ MD ; s(n)µ = s(N) µ ; s(t)µ = k2µ − (1− ρ− 2ρτ)k1µ − ρp1µ√ V cρ . In addition, further studies of polarization observ- ables in elastic lepton-deuteron scattering, including 21 lepton masses [12] (and for the case of spin correla- tion coefficients in the limit of zero lepton mass) are promising. References 1. D.K.Hasell et al. Spin-Dependent Electron Scat- tering from Polarized Protons and Deuterons with the BLAST Experiment at MIT-Bates // Rev. Nucl. Part. Sci. 2011, v.61, p.409. 2. A.A.Temerbayev, Yu.N.Uzikov. Spin Observ- ables in Proton-Deuteron Scattering and T- Invariance Test // Phys. Atom. Nucl. 2015, v.78, p.35-42. 3. K. Sekiguchi et al. Complete set of deuteron analyzing powers from dp elastic scattering at 190 MeV/nucleon // Phys. Rev. C. 2017, v.96, p.064001. 4. B.V. Przewoski et al. Analyzing powers and spin correlation coef?cients for p+d elastic scattering at 135 and 200MeV // Phys. Rev. C. 2006, v.74, p.064003. 5. G.I.Gakh, M.I.Konchatnij, N.P.Merenkov. Ra- diative Corrections to Polarization Observables in Elastic Electron-Deuteron Scattering in Lep- tonic Variables // J. Exp. Theor. Phys. 2012, v.115, p.212-236. 6. G.I.Gakh, M.I.Konchatnij, N.P.Merenkov. Lep- tonic radiative corrections to elastic deuteron- electron scattering // Phys. Rev. C. 2018, v.98, p.045212. 7. G.I.Gakh, N.P.Merenkov. Radiative Corrections to Polarization Observables in Elastic Electron- Deuteron Scattering in Hadronic Variables // J. Exp. Theor. Phys. 2004, v.98, p.853-869. 8. V.I. Zhaba. The vector and tensor asymmetries and deuteron wave function for different nucleon- nucleon potentials // World Scientific News. 2018, v. 114, p.230-240. 9. V.I. Zhaba. New analytical forms of wave func- tion in coordinate space and tensor polarization of deuteron // Mod. Phys. Lett. A. 2016, v.31, p.1650139. 10. F.Gross. Relativistic Calculation of the Deuteron Electromagnetic Form Factor. II* // Phys. Rev. 1964, v.136, p.B140-B161. 11. R.Gilman, F.Gross. Electromagnetic structure of the deuteron // J. Phys. G. 2002, v.28, p.R37- R116. 12. G.I.Gakh, A.G.Gakh, E.Tomasi-Gustafsson. Polarization observables in lepton-deuteron elas- tic scattering including the lepton mass // Phys. Rev. C. 2014, v.90, p.064901. ÁÎÐÍÎÂÑÊÈÅ ÇÍÀ×ÅÍÈß ÂÅÊÒÎÐÍÛÕ È ÒÅÍÇÎÐÍÛÕ ÀÑÈÌÌÅÒÐÈÉ Â ÝËÅÊÒÐÎÍ-ÄÅÉÒÐÎÍÍÎÌ ÐÀÑÑÅßÍÈÈ Â.È.Æàáà Ñ èñïîëüçîâàíèåì ðàíåå ïîëó÷åííûõ êîýôôèöèåíòîâ àíàëèòè÷åñêîé ôîðìû âîëíîâîé ôóíêöèè äåé- òðîíà â êîîðäèíàòíîì ïðåäñòàâëåíèè äëÿ íóêëîí-íóêëîííîãî ïîòåíöèàëà Argonne v18 ðàññ÷èòàíû áîð- íîâñêèå çíà÷åíèÿ âåêòîðíûõ AL B , A T B è òåíçîðíûõ ALL B , ATT B , ALT B àñèììåòðèé, íåîáõîäèìûå äëÿ îöåíêè ðàäèàöèîííûõ ïîïðàâîê ê ïîëÿðèçàöèîííûì íàáëþäàåìûì â óïðóãîì ýëåêòðîí-äåéòðîííîì ðàññåÿíèè â ëåïòîííûõ ïåðåìåííûõ. Èìïóëüñíî-óãëîâàÿ çàâèñèìîñòü äëÿ âåêòîðíûõ è òåíçîðíûõ àñèììåòðèé ïðîèëëþñòðèðîâàíà â ôîðìàòå 3D. Êàæäàÿ êîìïîíåíòà àñèììåòðèè èìååò ñâîþ îñîáåííîñòü ôîðìû â çàâèñèìîñòè îò çíà÷åíèé óãëà ðàññåÿíèÿ èëè èìïóëüñà ÷àñòèöû. ÁÎÐÍIÂÑÜÊI ÇÍÀ×ÅÍÍß ÂÅÊÒÎÐÍÈÕ I ÒÅÍÇÎÐÍÈÕ ÀÑÈÌÅÒÐIÉ Â ÅËÅÊÒÐÎÍ-ÄÅÉÒÐÎÍÍÎÌÓ ÐÎÇÑIßÍÍI Â. I.Æàáà Ç âèêîðèñòàííÿì ðàíiøå îòðèìàíèõ êîåôiöi¹íòiâ àíàëiòè÷íî¨ ôîðìè õâèëüîâî¨ ôóíêöi¨ äåéòðîíà â êîîðäèíàòíîìó ïðåäñòàâëåííi äëÿ íóêëîí-íóêëîííîãî ïîòåíöiàëó Argonne v18 ðîçðàõîâàíi áîðíiâñüêi çíà÷åííÿ âåêòîðíèõ AL B , A T B i òåíçîðíèõ ALL B , ATT B , ALT B àñèìåòðié, íåîáõiäíi äëÿ îöiíêè ðàäiàöiéíèõ ïî- ïðàâîê äî ïîëÿðèçàöiéíèõ ñïîñòåðåæóâàíèõ ó ïðóæíîìó åëåêòðîí-äåéòðîííîìó ðîçñiÿííi â ëåïòîííèõ çìiííèõ. Iìïóëüñíî-êóòîâà çàëåæíiñòü äëÿ âåêòîðíèõ i òåíçîðíèõ àñèìåòðié ïðîiëþñòðîâàíà â ôîðìàòi 3D. Êîæíà êîìïîíåíòà àñèìåòði¨ ì๠ñâîþ îñîáëèâiñòü ôîðìè â çàëåæíîñòi âiä çíà÷åíü êóòà ðîçñiÿííÿ àáî iìïóëüñó ÷àñòèíêè. 22