Modeling the response of a planar silicon detector when measuring the exposure dose rate in the energy range from 5 keV to 10MeV

The main advantages of using silicon semiconductor detectors in dosimetry in comparison with traditional detectors are considered. The shortcomings are analyzed and possible methods for their elimination are proposed. One of the proposed methods makes it possible to increase the efficiency of detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Dubina, V.N., Maslov, N.I., Shlyahov, I.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/194575
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Modeling the response of a planar silicon detector when measuring the exposure dose rate in the energy range from 5 keV to 10MeV / V.N. Dubina, N.I. Maslov, I.N. Shlyahov // Problems of atomic science and tecnology. — 2020. — № 5. — С. 105-110. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The main advantages of using silicon semiconductor detectors in dosimetry in comparison with traditional detectors are considered. The shortcomings are analyzed and possible methods for their elimination are proposed. One of the proposed methods makes it possible to increase the efficiency of detecting gamma quantum in the energy range 0.1…10MeV. The requirements are formulated to optimize the design of detectors operating in a wide range of dose rates and gamma radiation energies by computer simulation. Mathematical calculations and computer simulations determine the dosimeter design, materials and thicknesses γ–converter. The mechanisms of modeling the absorbed dose in air and ambient dose in silicon detectors with a thickness of 300 μm, sizes (5×5)mm² and (1.8×1.8)mm², in the range of incident γ–ray energies from 5keV to 10 MeV are presented.