Modeling the response of a planar silicon detector when measuring the exposure dose rate in the energy range from 5 keV to 10MeV

The main advantages of using silicon semiconductor detectors in dosimetry in comparison with traditional detectors are considered. The shortcomings are analyzed and possible methods for their elimination are proposed. One of the proposed methods makes it possible to increase the efficiency of detect...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Dubina, V.N., Maslov, N.I., Shlyahov, I.N.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/194575
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Modeling the response of a planar silicon detector when measuring the exposure dose rate in the energy range from 5 keV to 10MeV / V.N. Dubina, N.I. Maslov, I.N. Shlyahov // Problems of atomic science and tecnology. — 2020. — № 5. — С. 105-110. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The main advantages of using silicon semiconductor detectors in dosimetry in comparison with traditional detectors are considered. The shortcomings are analyzed and possible methods for their elimination are proposed. One of the proposed methods makes it possible to increase the efficiency of detecting gamma quantum in the energy range 0.1…10MeV. The requirements are formulated to optimize the design of detectors operating in a wide range of dose rates and gamma radiation energies by computer simulation. Mathematical calculations and computer simulations determine the dosimeter design, materials and thicknesses γ–converter. The mechanisms of modeling the absorbed dose in air and ambient dose in silicon detectors with a thickness of 300 μm, sizes (5×5)mm² and (1.8×1.8)mm², in the range of incident γ–ray energies from 5keV to 10 MeV are presented.