Pulsed electromagnetic gas valves for high-current plasma accelerators
The paper describes the design features of a gas valve for the axial (parallel to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2019 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/194618 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Pulsed electromagnetic gas valves for high-current plasma accelerators / V.V. Staltsov, V.V. Chebotarev, S.S. Herashchenko, N.V. Kulik // Problems of atomic science and technology. — 2019. — № 1. — С. 87-90. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194618 |
|---|---|
| record_format |
dspace |
| spelling |
Staltsov, V.V. Chebotarev, V.V. Herashchenko, S.S. Kulik, N.V. 2023-11-27T19:11:33Z 2023-11-27T19:11:33Z 2019 Pulsed electromagnetic gas valves for high-current plasma accelerators / V.V. Staltsov, V.V. Chebotarev, S.S. Herashchenko, N.V. Kulik // Problems of atomic science and technology. — 2019. — № 1. — С. 87-90. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 47.80.-v, 51.35.+a, 52.30.-q, 52.50.Dg https://nasplib.isofts.kiev.ua/handle/123456789/194618 The paper describes the design features of a gas valve for the axial (parallel to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected working gas on the electric current value in the control coil was found. Oписуються особливості конструкції клапана газу з електромагнітним приводом запираючого елемента для осьової (паралельної осі прискорювача) подачі газу в прискорювальний канал плазмодинамічних систем. Представлено результати газодинамічних досліджень клапана. Досліджена залежність кількості робочого газу, що напускається, залежно від тиску газу під запираючим елементом клапана. Показана істотна залежність кількості робочого газу, що напускається, від величини струму в електромагнітній котушці. Oписываются особенности конструкции клапана газа с электромагнитным приводом запирающего элемента для осевой (параллельной оси ускорителя) подачи рабочего газа в ускорительный канал плазмодинамических систем. Представлены результаты газодинамических исследований клапана. Исследована зависимость количества напускаемого рабочего газа в зависимости от давления газа под запирающим элементом клапана. Показана существенная зависимость количества инжектированного рабочего газа от величины тока в электромагнитной катушке. This work has been supported by National Academy Science of Ukraine project X-4-3/2018, П-5/24-2018 and № 08-01-18. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Plasma dynamics and plasma-wall interaction Pulsed electromagnetic gas valves for high-current plasma accelerators Імпульсний електромагнітний газовий клапан для сильнострумових плазмових прискорювачів Импульсный электромагнитный газовый клапан для сильноточных плазменных ускорителей Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Pulsed electromagnetic gas valves for high-current plasma accelerators |
| spellingShingle |
Pulsed electromagnetic gas valves for high-current plasma accelerators Staltsov, V.V. Chebotarev, V.V. Herashchenko, S.S. Kulik, N.V. Plasma dynamics and plasma-wall interaction |
| title_short |
Pulsed electromagnetic gas valves for high-current plasma accelerators |
| title_full |
Pulsed electromagnetic gas valves for high-current plasma accelerators |
| title_fullStr |
Pulsed electromagnetic gas valves for high-current plasma accelerators |
| title_full_unstemmed |
Pulsed electromagnetic gas valves for high-current plasma accelerators |
| title_sort |
pulsed electromagnetic gas valves for high-current plasma accelerators |
| author |
Staltsov, V.V. Chebotarev, V.V. Herashchenko, S.S. Kulik, N.V. |
| author_facet |
Staltsov, V.V. Chebotarev, V.V. Herashchenko, S.S. Kulik, N.V. |
| topic |
Plasma dynamics and plasma-wall interaction |
| topic_facet |
Plasma dynamics and plasma-wall interaction |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Імпульсний електромагнітний газовий клапан для сильнострумових плазмових прискорювачів Импульсный электромагнитный газовый клапан для сильноточных плазменных ускорителей |
| description |
The paper describes the design features of a gas valve for the axial (parallel to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected working gas on the electric current value in the control coil was found.
Oписуються особливості конструкції клапана газу з електромагнітним приводом запираючого елемента для осьової (паралельної осі прискорювача) подачі газу в прискорювальний канал плазмодинамічних систем. Представлено результати газодинамічних досліджень клапана. Досліджена залежність кількості робочого газу, що напускається, залежно від тиску газу під запираючим елементом клапана. Показана істотна залежність кількості робочого газу, що напускається, від величини струму в електромагнітній котушці.
Oписываются особенности конструкции клапана газа с электромагнитным приводом запирающего элемента для осевой (параллельной оси ускорителя) подачи рабочего газа в ускорительный канал плазмодинамических систем. Представлены результаты газодинамических исследований клапана. Исследована зависимость количества напускаемого рабочего газа в зависимости от давления газа под запирающим элементом клапана. Показана существенная зависимость количества инжектированного рабочего газа от величины тока в электромагнитной катушке.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194618 |
| citation_txt |
Pulsed electromagnetic gas valves for high-current plasma accelerators / V.V. Staltsov, V.V. Chebotarev, S.S. Herashchenko, N.V. Kulik // Problems of atomic science and technology. — 2019. — № 1. — С. 87-90. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT staltsovvv pulsedelectromagneticgasvalvesforhighcurrentplasmaaccelerators AT chebotarevvv pulsedelectromagneticgasvalvesforhighcurrentplasmaaccelerators AT herashchenkoss pulsedelectromagneticgasvalvesforhighcurrentplasmaaccelerators AT kuliknv pulsedelectromagneticgasvalvesforhighcurrentplasmaaccelerators AT staltsovvv ímpulʹsniielektromagnítniigazoviiklapandlâsilʹnostrumovihplazmovihpriskorûvačív AT chebotarevvv ímpulʹsniielektromagnítniigazoviiklapandlâsilʹnostrumovihplazmovihpriskorûvačív AT herashchenkoss ímpulʹsniielektromagnítniigazoviiklapandlâsilʹnostrumovihplazmovihpriskorûvačív AT kuliknv ímpulʹsniielektromagnítniigazoviiklapandlâsilʹnostrumovihplazmovihpriskorûvačív AT staltsovvv impulʹsnyiélektromagnitnyigazovyiklapandlâsilʹnotočnyhplazmennyhuskoritelei AT chebotarevvv impulʹsnyiélektromagnitnyigazovyiklapandlâsilʹnotočnyhplazmennyhuskoritelei AT herashchenkoss impulʹsnyiélektromagnitnyigazovyiklapandlâsilʹnotočnyhplazmennyhuskoritelei AT kuliknv impulʹsnyiélektromagnitnyigazovyiklapandlâsilʹnotočnyhplazmennyhuskoritelei |
| first_indexed |
2025-11-25T23:10:42Z |
| last_indexed |
2025-11-25T23:10:42Z |
| _version_ |
1850579398634242048 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №1(119)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 87-90. 87
PULSED ELECTROMAGNETIC GAS VALVES FOR HIGH-CURRENT
PLASMA ACCELERATORS
V.V. Staltsov, V.V. Chebotarev, S.S. Herashchenko, N.V. Kulik
National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine
E-mail: staltsov@kipt.kharkov.ua
The paper describes the design features of a gas valve for the axial (parallel to the axis of the accelerator)
working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented.
The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve
element. A strong dependence of the amount of the injected working gas on the electric current value in the control
coil was found.
PACS: 47.80.-v, 51.35.+a, 52.30.-q, 52.50.Dg
INTRODUCTION
The studies of high-power plasma streams have
shown a substantial effect of the parameters of the
neutral gas injected into the accelerator channel on the
finite energy parameters of the plasma [1-6]. For
realizing a regular plasma flow in the accelerator
channel, it is necessary to provide the assigned working
gas pressure gradient in the accelerator channel, and
also, to ensure the required mass flow rate of the
working substance during the whole period of plasma
existence [3-6]. This is necessary primarily to eliminate
the crisis phenomena of the discharge current [1, 2]. To
meet these requirements, various modifications of high-
speed gas injectors with a wide range of functional
properties have been developed [3-8]. After the
ionization of the working substance in the discharge
space of the accelerator, the positively charged ions start
moving towards the cathode. Due to this fact, a zone
with the deficit of positively charged ions and, hence,
with the excess of negatively charged particles is
formed near the surface of the anode. This forms a near-
anode potential jump. As a result, the symmetry of the
plasma flow is violated, thus leading to instability of the
ionization zone of the working gas and preventing the
efficient conversion of the stored energy into the kinetic
energy of the plasma flow [1, 2]. To overcome this
drawback, substantially new approaches to organizing
regular plasma flows and developing adequate designs
of plasma-dynamic systems and their valves of the
operating substance are necessary.
In this paper, the new design of the pulsed
electromagnetic gas valve for high-power
plasmodynamic systems is presented. The main features
of the valve are discussed.
THE PULSED ELECTROMAGNETIC GAS
VALVE (PEGV)
In order to ensure a high mass rate of working gas
flow in the accelerator channel in combination with a
high gas flow pressure, a Pulsed electromagnetic gas
valve (PEGV) has been developed. The injector supplies
the working gas directly to the ionization zone, enabling
the formation of the required gas pressure gradient
along the radius of the accelerating channel. Fig. 1
shows the 3D model of the PEGV, Fig. 2 – component
parts of the PEGV.
Fig. 1. The 3D model of the PEGV
Fig. 2. Component parts of the PEGV: 1 – housing;
2 – saddle of the valve; 3 – electromagnetic coil;
4 – locking element
Fig. 3 illustrates the design of the PEGV. In
particular, the electromagnetic coil 1 is placed in the
booster gas chamber A, and it acts directly on the
locking element 3. Such a location of the
electromagnetic coil holds significance for enhancing
the operation speed of the valve. The locking element 3
moves along the saddle of the valve 4 surface. Sealants
1
2 3
4
mailto:staltsov@kipt.kharkov.ua
88 ISSN 1562-6016. ВАНТ. 2019. №1(119)
protrusions of the locking element 3 are in contact with
sealants 5, 6, 7. Locking element 3 cuts off a booster gas
chamber A from the vacuum chamber B and from the
channels of gas inlet 8. The working gas is fed into the
booster gas chamber C and A through the nozzle 9. The
sealants 11, 12 are located between the housing 2 and
flange 10. They seal gas booster chamber C. When
triggered, gas from the booster chamber A enters the
vacuum chamber B through the channels of gas inlet 8.
Fig. 3. Design of the PEGV. 1 – electromagnetic
coil; 2 – housing; 3 – locking element; 4 – saddle;
5, 6, 7, 11, 12 – sealants; 8 – channels of gas inlet;
9 – nozzle; 10 – flange; A, C – booster gas chamber;
B – vacuum chamber
The locking element of the valve is free of working
gas pressure, i.e., with a variation of the gas pressure in
the booster gas chamber the clamping pressure of the
locking element on the sealants remains unchanged.
This enables one to change the inlet gas flow parameters
by varying the gas pressure in the gas chamber without
changing the parameters of the drive current of the coil.
The factor of relieving the moving elements from gas-
pressure-induced forces also has its positive effect on
the operation speed of the system and the service life of
the magnetic coil, considering that with increasing gas
pressure this factor permits opening of inlet channels at
the same high rate without increasing the current
intensity in the coil winding. The same factor permits an
essential range extension of initial operating gas
pressures in the booster chamber, at which the injector
shows a stable and reliable operation.
One should note that this construction scheme of the
pulse gas valve ensures a higher speed of operation,
since here the only moving element is the locking plate,
directly on which the electromagnetic coil acts.
The described gas valve variant supplies to the
discharge space of the plasma injector in the form of an
annular jet. In addition, the annular jet is injected along
the surface of the outer electrode (in this case, anode).
Such a scheme of the working gas is preferable if a
problem of eliminating the near-anode potential jump
solved. Hence, the injector variant with an axial inlet
was created by changing the embodiment of gas inlet
channels. Different injection schemes of the working
gas into the accelerating channel of the plasma-dynamic
system is an important factor of controlling the working
gas dynamics in the accelerating channel, and, hence,
the parameters of the plasma flow and their
optimization.
In the valve, the parameters of the gas flow,
admitted into the discharge channel, are regulated by
changing the current in the winding of the control
electromagnetic coil, the initial gas pressure in the
booster cavity, and the force of compression of the
elastic shock absorber.
STUDIES OF GAS-DYNAMIC AND
CURRENT-VOLTAGE CHARACTERISTICS
OF THE PEGV
Gas-dynamic and current-voltage characteristics of
the PEGV have been made. The study of the gas-
dynamic characteristics of the working-substance valves
was performed using piezoelectric pressure detectors
(the speed of their operation is 2.5…3 μs). The current
value in the winding of the coil was measured using
calibrated Rogowski coils. The volume of the gas,
which is admitted by the pulse valve of the working
substance for one pulse, was determined by the
calculation method after the VIT-3 vacuum-gauge
measurement of the pressure difference in the vacuum
chamber of the plant before and after the inflow.
Fig. 4 shows the dependences of the current for a
voltage in the winding of the electromagnetic coil of the
PEGV.
300 320 340 360 380 400 420
4,0
4,2
4,4
4,6
4,8
5,0
5,2
I,
k
A
U, V
Fig. 4. Dependences of the current from the voltage in
the winding of the electromagnetic coil of the PEGV
Fig. 5 shows the time dependences of the current
pulse I in the winding of the electromagnetic coil of the
PEGV at the voltage of 400 V at the power-supply bank
and a gas-for different initial pressure in the booster
chamber: p1 = 1 atm; p3 = 3 atm. The pressure of the gas
flow was measured at a distance of 40 mm from the gas
inlet channels. The gas-pulse duration is 900 μs. In all
the modes, a pressure peak with a duration of
100…300 μs is observed at the beginning of the gas
pulse after which the hydrogen pressure in the flow
decreases. For the stated operation modes of the cutoff
valve, 800…900 μs is the time gap, when the nitrogen
ISSN 1562-6016. ВАНТ. 2019. №1(119) 89
pressure in the flow is close to its maximum and, in
addition, does not substantially change. Therefore, it is
expedient to switch-on the voltage between the
electrodes of the plasma injector for the discharge
formation and plasma generation with a delay of
~850 μs after the supply of a current pulse. In this case,
the ionization of the working gas occurs at the maximal
pressure and is relatively stable during the plasma
existence time.
0 500 1000 1500
0
1
2
3
4
5
p
,
T
o
rr
I,
k
A
t, s
200
50
100
150
250
0
I
p
3
p
1
Fig. 5. Time dependences of the current pulse I in the
winding of the electromagnetic coil of the PEGV at the
voltage of 400 V at the power – supply bank and a gas –
for different initial pressure in the booster chamber:
p1 = 1 atm; p3 = 3 atm
It is important both for the creation of the leading
edge of the gas pulse with the optimal gas-dynamic
parameters and formation in the gas flow of an optimal
pressure gradient along the radius and length of the
accelerating channel for the timely supply of the plasma
flow with lacking carriers of the discharge current. This
injection scheme of the working gas allowed us to
eliminate the near-electrode potential jump and, as a
result, obtain a plasma flow with high energy
characteristics.
Fig. 6 shows the integrated working gas inlet (gas
volume under atmospheric pressure injected per pulse)
from the voltage in the winding of the electromagnetic
coil of the PEGV at initial booster-chamber gas
pressures of 1 atm (1), 2 atm (2), 3 atm (3). It follows
from the dependencies that an increase of the voltage in
the electromagnetic coil of the gas valve and the initial
pressure of the working gas in the booster chamber
leads to an increase in the volume of the working-gas
inflow. The analysis of the curves shows that the gas
inlet for the PEGV is essentially dependent on the
voltage supplied to the electromagnetic coil winding
(hence, on the current value in the coil winding), and on
the initial gas pressure in the booster chamber of the
valve. Thus, with an increase of the coil voltage from
250 up to 400 V, the operating gas inlet increased from
24 up to 38 cm
3
·atm per pulse at an initial gas pressure
of 1 atm in the booster chamber. For an initial gas
pressure of 3 atm the gas inlet at the same voltage
values has increased from 37 up to 79 cm
3
·atm.
The described gas valve allows one to admit the
working gas in a wide range of 24 to 79 cm
3
per pulse
(at the atmosphere pressure) for hydrogen. It can be
used both in high-power plasma-dynamic systems, in
which the duration of the plasma generation is hundreds
of microseconds and in systems with a short pulse and
small mass flow of the working gas, where the duration
of the flow generation is only several microseconds.
250 300 350 400 450
20
40
60
80
V
,
cm
3
U, V
1
2
3
Fig. 6. Integrated working gas inlet by the PEGV versus
control – coil winding voltage at initial booster –
chamber gas pressures: 1 atm (1); 2 atm (2); 3 atm (3)
The performed studies of the basic electrical
characteristics of the gas valve and dynamics of the gas-
flow generation open up possibilities for the efficient
matching of the gas injection processes and
development of the discharge in the accelerating
channel of the plasma injectors. In the optimal case, the
ionization of the working gas in the discharge gap
occurs at the moment, when the flow of the plasma-
forming gas has the maximal pressure and is stable
during the whole discharge existence time in the plasma
accelerator.
CONCLUSIONS
Pulsed electromagnetic gas valve (PEGV) has been
developed and tested for high-power plasmodynamic
systems. The PEGV makes it possible to form the gas
pulse with required gas-dynamic parameters both in the
radial direction and along the length of the accelerator
channel. It has been shown the injectors provide a
metered integrated inlet of the working gas ranging
from 24 to 79 cm
3
·atm per pulse. The maximum gas
flow pressure varies from 3 to 190 Torr. A wide range
of gas flow parameters permits the efficient variation in
the energy parameters of plasma. During the process of
plasma acceleration, the action of the injector PEGV
provides the plasma stream stabilization and an efficient
feed of current carriers to the zone.
The obtained results are important for high energy
density plasmadynamics. Plasma streams with
optimized parameters are going to be used in
technological applications for surface modification [7-
11] and in further studies of plasma-surface interactions
simulating fusion reactor conditions [12-18].
ACKNOWLEDGEMENTS
This work has been supported by National Academy
Science of Ukraine project X-4-3/2018, П-5/24-2018
and № 08-01-18.
90 ISSN 1562-6016. ВАНТ. 2019. №1(119)
REFERENCES
1. A.I. Morozov // Fizika plasmy. 1990, v. 16, № 2,
p. 131-146 (in Russian).
2. A.I. Morozov et al. //Plasma Devices and Operations.
1992, v. 2, № 2, p. 155.
3. A.K. Marchenko, I.E. Garkusha, V.V. Staltsov, et al.
// Problems of Atomic Science and Technology.
Ser. “Plasma Physics”. 2014, v. 94, № 6, p. 83.
4. V.V. Staltsov et al. // Problems of Atomic Science and
Technology. Ser.: “Plasma Physics”. 2015, № 1, v. 95,
p. 118-121.
5. V.V. Staltsov // Problems of Atomic Science and
Technology. Ser. “Plasma Physics”. 2015, № 4, v. 98,
p. 140-143.
6. V.V. Staltsov // Instruments and Experimental
techniques. 2016, v. 59, № 4, p. 609-614.
7. V.I. Tereshin et al. // Vacuum. 2004, v. 73(3-4),
p. 555-560.
8. V.I. Tereshin et al. // Rev. Sci. Instr. 2002, v. 53(2),
p. 831.
9. I.E. Garkusha et al. // Vacuum. 2000, v. 58 (2),
p. 195-201.
10. J. Langner et al. // Surf. Coat. Techn. 2000, v. 128-
129, p. 105-111.
11. V.V. Chebotarev et al. // Journal of Nuclear
Materials. 1996, v. 233-237, p. 736-740.
12. I.E. Garkusha et al. // Journal of Nuclear Materials.
2011, v. 415 (1), p. S65-S69.
13. I.E. Garkusha et al. // Phys. Scr. 2009, v. T138,
p. 14054.
14. I.S. Landman et al. // Phys. Scr. 2004, v. T111,
p. 206-212.
15. V.I. Tereshin et al. // Brazilian Jour. of Phys. 2002,
v. 32 (1), p. 165-171.
16. I.E. Garkusha et al. // Phys. Scr. 2016, v. 91, 094001
(10).
17. V.A. Makhlai et al. // Journal of Nuclear Materials.
2015, v. 463, p. 210-214.
18. I.E. Garkusha et al. // Phys. Scr. 2014, v. T161,
p. 014037.
Article received 18.01.2019
ИМПУЛЬСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ГАЗОВЫЙ КЛАПАН ДЛЯ СИЛЬНОТОЧНЫХ
ПЛАЗМЕННЫХ УСКОРИТЕЛЕЙ
В.В. Стальцов, В.В. Чеботарёв, С.С. Геращенко, Н.В. Кулик
Oписываются особенности конструкции клапана газа с электромагнитным приводом запирающего
элемента для осевой (параллельной оси ускорителя) подачи рабочего газа в ускорительный канал
плазмодинамических систем. Представлены результаты газодинамических исследований клапана.
Исследована зависимость количества напускаемого рабочего газа в зависимости от давления газа под
запирающим элементом клапана. Показана существенная зависимость количества инжектированного
рабочего газа от величины тока в электромагнитной катушке.
ІМПУЛЬСНИЙ ЕЛЕКТРОМАГНІТНИЙ ГАЗОВИЙ КЛАПАН ДЛЯ СИЛЬНОСТРУМОВИХ
ПЛАЗМОВИХ ПРИСКОРЮВАЧІВ
В.В. Стальцов, В.В. Чеботарьов, С.С. Геращенко, М.В. Кулик
Oписуються особливості конструкції клапана газу з електромагнітним приводом запираючого елемента
для осьової (паралельної осі прискорювача) подачі газу в прискорювальний канал плазмодинамічних
систем. Представлено результати газодинамічних досліджень клапана. Досліджена залежність кількості
робочого газу, що напускається, залежно від тиску газу під запираючим елементом клапана. Показана
істотна залежність кількості робочого газу, що напускається, від величини струму в електромагнітній
котушці.
|