Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, E...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , , , , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/194629 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194629 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1946292025-02-09T13:44:07Z Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets Антикорозійні керамічні покриття на поверхні стягувальних магнітів Nd-Fe-B Антикоррозионные керамические покрытия на поверхности стягивающих магнитов Nd-Fe-B Taran, A.V. Garkusha, I.E. Taran, V.S. Timoshenko, O.I. Misiruk, I.O. Skoblo, T.S. Romaniuk, S.P. Starikov, V.V. Baturin, A.A. Nikolaychuk, G.P. Pyvovar, N.V. Gnidenko, Yu.P. Low temperature plasma and plasma technologies The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment. Представленo результати вакуумно-дугового осадження тонких покриттів ZrO₂ для захисту поверхонь постійних магнітів Nd-Fe-B, що використовуються як стягувальні пристрої в ортодонтії. Структура, фазовий склад та механічні властивості плівки діоксиду цирконію були досліджені засобами SEM, XRD, EDX, XRF та наноіндентування. Було виявлено утворення полікристалічних плівок ZrO₂ моноклінної модифікації з середнім розміром зерна 25 нм. Вивчено вплив покриття ZrO₂ як бар’єру для захисту магнітів від корозії в квазіфізіологічному розчині 0,9 NaCl. Електрохімічні виміри встановили хороші бар'єрні властивості покриття на зразках у середовищі фізіологічного розчину. Представлены результаты вакуумно-дугового осаждения тонких покрытий ZrO₂ для защиты поверхности постоянных магнитов Nd-Fe-B, используемых в качестве стягивающих устройств в ортодонтии. Структура, фазовый состав и механические свойства пленок двуокиси циркония были исследованы методами SEM, XRD, EDX, XRF, наноиндентирования. Было обнаружено образование поликристаллических пленок ZrO₂ моноклинной модификации со средним размером зерна 25 нм. Изучено влияние покрытия ZrO₂ в качестве барьера для защиты магнитов от коррозии в квазифизиологическом растворе 0,9 NaCl. Электрохимические измерения показали хорошие барьерные свойства покрытия на образцах в среде физиологического раствора. 2019 Article Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.77.-j; 81.20.-n https://nasplib.isofts.kiev.ua/handle/123456789/194629 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
| spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Taran, A.V. Garkusha, I.E. Taran, V.S. Timoshenko, O.I. Misiruk, I.O. Skoblo, T.S. Romaniuk, S.P. Starikov, V.V. Baturin, A.A. Nikolaychuk, G.P. Pyvovar, N.V. Gnidenko, Yu.P. Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets Вопросы атомной науки и техники |
| description |
The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment. |
| format |
Article |
| author |
Taran, A.V. Garkusha, I.E. Taran, V.S. Timoshenko, O.I. Misiruk, I.O. Skoblo, T.S. Romaniuk, S.P. Starikov, V.V. Baturin, A.A. Nikolaychuk, G.P. Pyvovar, N.V. Gnidenko, Yu.P. |
| author_facet |
Taran, A.V. Garkusha, I.E. Taran, V.S. Timoshenko, O.I. Misiruk, I.O. Skoblo, T.S. Romaniuk, S.P. Starikov, V.V. Baturin, A.A. Nikolaychuk, G.P. Pyvovar, N.V. Gnidenko, Yu.P. |
| author_sort |
Taran, A.V. |
| title |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets |
| title_short |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets |
| title_full |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets |
| title_fullStr |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets |
| title_full_unstemmed |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets |
| title_sort |
anti-corrosion ceramic coatings on the surface of nd-fe-b repelling magnets |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2019 |
| topic_facet |
Low temperature plasma and plasma technologies |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194629 |
| citation_txt |
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT taranav anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT garkushaie anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT taranvs anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT timoshenkooi anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT misirukio anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT skoblots anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT romaniuksp anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT starikovvv anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT baturinaa anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT nikolaychukgp anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT pyvovarnv anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT gnidenkoyup anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets AT taranav antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT garkushaie antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT taranvs antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT timoshenkooi antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT misirukio antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT skoblots antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT romaniuksp antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT starikovvv antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT baturinaa antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT nikolaychukgp antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT pyvovarnv antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT gnidenkoyup antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb AT taranav antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT garkushaie antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT taranvs antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT timoshenkooi antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT misirukio antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT skoblots antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT romaniuksp antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT starikovvv antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT baturinaa antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT nikolaychukgp antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT pyvovarnv antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb AT gnidenkoyup antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb |
| first_indexed |
2025-11-26T10:42:00Z |
| last_indexed |
2025-11-26T10:42:00Z |
| _version_ |
1849849254269419520 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №1(119)
116 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 116-119.
ANTI-CORROSION CERAMIC COATINGS ON THE SURFACE OF
Nd-Fe-B REPELLING MAGNETS
A.V. Taran
1
, I.E. Garkusha
1,4
, V.S. Taran
1
, O.I. Timoshenko
1
, I.O. Misiruk
1
, T.S.
Skoblo
2
,
S.P. Romaniuk
2
, V.V. Starikov
3
, A.A. Baturin
3
, G.P. Nikolaychuk
3
,
N.V. Pyvovar
4,5
, Yu.P. Gnidenko
4
1
National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine;
2
Kharkov Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine;
3
National Technical University “Kharkov Polytechnic Institute”, Kharkiv, Ukraine;
4
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;
5
College of Science of the University of Alabama in Huntsville, USA
E-mail: avtaran@ukr.net
The results of vacuum-arc deposition of thin ZrO2 coatings to protect the surface of Nd-Fe-B permanent magnets
used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties
of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation
method. It was revealed the formation of polycrystalline ZrO2 films of monoclinic modification with average grain
size 25 nm. The influence of the ZrO2 coating in terms of its barrier properties for corrosion in quasi-physiological
0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating
on specimens in the physiological solution environment.
PACS: 52.77.-j; 81.20.-n
INTRODUCTION
Hard magnetic alloys (permanent magnets) are used
as components in a wide range of industrial applications,
in regulating and measuring controls and in medical
equipment. Neodymium iron boron (Nd-Fe-B) or “neo”
magnets offer the highest energy product of any material
today and are available in a wide range of shapes, sizes
and grades. However, the neo magnets have some
limitations due to their corrosive behavior. Thus, for
medical applications, a protective coating is highly
recommended. In this case, zirconium dioxide in the form
of thin buffer layer on magnet surface is a promising
candidate, due to its biological inertness and corrosion
resistance.
Nd-Fe-B magnets are frequently used as repelling
devices for orthodontics and are advantageous over
other materials used to move teeth, such as push-coil or
elastic chain [1]. Nd-Fe-B magnetic devices are offered
as optimum and biologically safe force-generating
system. Neo magnets possess continuous force over
extended periods of time for various kinds of tooth
movement, and have no friction. Disadvantages of their
application are corrosion products which are toxic.
Zirconium dioxide ZrO2 ceramics possesses high
resistance to crack propagation, high fracture toughness,
high thermal expansion coefficient (α=11x10
-6
/K,
similar to some types of steel) and due to these
properties, it is very much suitable for joining ceramic
and steel. It possesses also excellent thermal
insulation/low thermal conductivity (2.5 to 3 W/mK)
[2].
Various deposition methods, namely thermal
oxidation of zirconium films, electron beam
evaporation, pulsed laser deposition, DC/RF magnetron
sputtering, sol-gel process and spray pyrolysis were
employed for preparation of ZrO2 thin films [3-8].
Physical vapor deposition (PVD) methods of coating
application including vacuum arc evaporation in a
reactive medium (oxygen, nitrogen) are widely used to
obtain ceramic coatings with a high melting point [9-
12].
In our experiments, thin ZrO2 coatings were
deposited using vacuum-arc evaporation with
curvilinear filter for decreasing macroparticles (MPs)
emitted from plasma flow in Bulat-type device. The
structure, chemical and phase composition of the
obtained ZrO2 coatings have been investigated.
Corrosion experiments were carried out in physiological
0.9 % NaCl solution.
1. EXPERIMENTAL SETUP
The ZrO2 coatings on Nd-Fe-B magnets were
obtained in "Bulat" type device by condensing vacuum-
arc plasma purified from macro-particulates by means
of the curvilinear filter [13]. The general view of the
magnets is shown in Fig. 1.
Fig.1. General view of the Nd-Fe-B magnets
http://medicine.karazin.ua/
mailto:avtaran@ukr.net
ISSN 1562-6016. ВАНТ. 2019. №1(119) 117
The scheme of experimental equipment is shown in
Fig. 2. The magnets 5×5×2 mm size were fixed in the
holder that squeezed its opposite sides with a small
effort. Chemically pure zirconium (99.999) was used as
a cathode material. The chamber was preliminary
pumped out to a pressure of 6×10
-5
Torr. The pulsed
negative bias of 1000 V with frequency 50 kHz was
applied to the sample holder from the source PS-2. The
rotation of the holder was turned on, vacuum arc was
ignited (Id = 115 A) and the four faces of the magnets
were cleaned by zirconium ions in the pulsed mode:
cleaning of 1.5 s and pause of 6 s; in total 15 cycles.
Fig. 2. Scheme of experimental equipment:
1 – cathode; 2 – anode; 3 – electromagnetic coils;
4 – duct; 5 – baffles; 6 – samples; 7 – vacuum chamber;
PS-1 – arc discharge power supply unit; PS-2 – source
of pulsed negative bias
Then the source PS-2 was turned off, the chamber
was filled with oxygen to a pressure of about
4×10
–3
Torr and zirconium dioxide was deposited
during 12 min. Then the vacuum chamber was opened,
the magnets were installed in the other position and
ZrO2 was deposited on uncoated faces for 7 min.
The surface topography of ZrO2 was studied using
JEOL JSM-6390LV scanning electron microscope
(SEM) with an accelerating voltage of 20 kV, chemical
composition was examined using energy-dispersive
X-ray analysis (EDX).
Energy-dispersive spectrometer SPRUT-K (AO
Ukrrentgen, Ukraine) was used for X-ray fluorescent
analysis and was equipped with Si (Li) Х-100 detector
(Amptek, USA) in the arrangement with Si and KCl
secondary target. Film thickness was determined by
XRF examinations and comprised ~3 µm.
X-ray diffraction (XRD) analysis were performed
using DRON-3M device, under Cu–Kα radiation,
monohromated by (002) HOPG in diffracted beam. The
XRD line scans were performed in θ…2θ scanning
mode where the incident angle θ and diffracted angle 2θ
are scanned simultaneously.
The nanohardness was measured by Nanoindenter
G200 (USA). The loading and unloading rates of the
nanoindentation were 10 mN/min. Samples were tested
to a depth of 500 nm. 6 prints were made for each
sample and the distance between prints were 15 μm.
ZrO2 films have also been analyzed for their
corrosion properties in 0.9 % NaCl quasi-physiological
solution.
2. RESULTS AND DISCUSSION
2.1. COMPOSITION AND STRUCTURE
Energy dispersive X-ray analysis (EDX) and X-ray
diffraction analysis (XRD) were used to determine the
chemical and phase composition of the deposited films.
EDX spectrum of the as-deposited ZrO2 films formed at
oxygen partial pressure of 4.5×10
-3
Torr is shown in
Fig. 3,a.
The EDX spectrum consisted of the characteristic
zirconium and oxygen peaks without presence of any
other impurity peaks. The chemical content was
Zr = 30.46 at. % and O = 69.54 at. % (Tabl. 1). It
indicates that the deposited films were stoichiometric.
There was no variation of the chemical composition in
the films volume.
а
b
Fig. 3. EDX spectrum (a) and XRD pattern from Zr-O
film (b)
Table 1
EDX chemical composition of Zr-O film
Element Intensity wt. % at. %
O 0.6336 28.59 69.54
Zr 0.9100 71.41 30.46
The main diffraction peaks at 26.7
o
, 50
o
, 56.9
o
, and
61.5
o
related to the (111), (211), (310) and (311) reflects
of monoclinic phase of ZrO2 was monitored in XRD
pattern (Fig. 3,b). The film is crystalline and exists in
the single monoclinic ZrO2 phase according to JCPDF
(file 37-1484) with lattice parameters a = 5.312; b =
5.212; c = 5.147.
118 ISSN 1562-6016. ВАНТ. 2019. №1(119)
These results correlated well with the literature data
which indicate that at low temperatures the most stable
ZrO2 phase is monoclinic form, which occurs naturally
as the Baddeleyite mineral [14]. At the temperature
1478 K and ambient pressure the tetragonal structure
becomes thermodynamically stable. At 2650 K the
tetragonal structure changes into the cubic calcium
fluoride structure.
The crystallite size of the deposited ZrO2 coatings
was calculated from the full width at half maximum
intensity (β) (FWHM) of the X-ray diffraction angle (θ)
of the (111) peak and the wavelength (λ) of copper X-
ray radiation using Debye-Scherrer’s relation [15], by
taking into consideration that no strains were developed
in the coatings:
,cos /K = D (1)
where K is a constant (K = 0.9 for copper X-ray
radiation) and θ – the diffraction angle. Crystallite size
of the zirconium oxide film was 25 nm.
Fig. 4. SEM image of ZrO2 coating
The surface morphology of deposited ZrO2 thin film
was investigated using scanning electron microscopy.
Fig. 4 demonstrates homogeneous and crack free
surface of ZrO2 film.
2.2. MECHANICAL PROPERTIES
Plasticity index H/E and the ratio H
3
/E*
2
(where E*
= E/(l - μ
2
) – the effective elastic modulus; μ – Poisson's
ratio) are qualitative comparative characteristics of
material plastic deformation resistance. The shear
modulus (G) and yield stress (σT) are defined as:
G = E/2 × (1 + μ) and σT = Hµ / 3.
Table 2
Results of ZrO2 coating mechanical tests
E,
GPa
H,
GPa
H/E H3/E*2
G,
GPa
σT,
GPa
1 210.32 13.488 0.064 0.049 131.45 4.49
2 204.754 13.785 0.067 0.055 127.97 4.59
3 208.546 12.979 0.062 0.044 130.34 4.32
4 202.983 12.816 0.063 0.045 126.86 4.27
5 213.961 13.56 0.063 0.048 133.73 4.52
6 197.203 12.573 0.064 0.045 123.25 4.19
206.295 13.2 0.064 0.048 128.93 4.40
The results of H and E values for 6 prints, as well as
G, σT, and H
3
/E*
2
parameters, are summarized in
Tabl. 2.
According to nanohardness tests, the average value
of nanohardness for ZrO2 was 13.2 GPa, and the
average value of elastic modulus was 206.295 GPa.
2.3. CORROSION PROPERTIES
Uncoated Nd-Fe-B magnet showed an electrode
potential E of – 0.7 V. The coating of the zirconium
dioxide leads to significant passivation of the magnet
surface. The formed film possesses a high degree of
continuity even on the edges. It also lacked pores, which
could be easily detectable by electrochemical testing.
Electrode potentials of Nd-Fe-B magnet in initial state
and Nd-Fe-B magnet with ZrO2 coating are presented in
Fig. 5.
0 10 20 30 40
-0,8
-0,6
-0,4
-0,2
0,0
0,2
E
,
V
, min
1
2
Fig. 5. Electrode potentials of Nd-Fe-B magnet in initial
state (1) and Nd-Fe-B magnet with ZrO2 coating (2)
CONCLUSIONS
Monoclinic m-ZrO2 thin films have been
synthesized on the surface of Nd-Fe-B magnets using
vacuum-arc deposition with curvilinear filter in the
presence of oxygen plasma in the “Bulat”-type device.
SEM investigations revealed the formation of
uniform and crack-free structure of the film. XRD data
revealed the formation of fine-crystalline structured
films with average grain size of ~25 nm.
Corrosion experiments carried out in physiological
0.9 % NaCl solution showed significant passivation of
the surface of the magnet with E turned into positive
values. This indicates an increase of substrate resistance
against electrochemical corrosion.
The proposed technology can be useful for applying
buffer ZrO2 coatings on Nd-Fe-B magnets used as
repelling devices in orthodontics.
REFERENCES
1. M. Prasad, M. Manoj-Kumar, et al. // J. Clin. Exp.
Dent. 2016, v. 8 (2), p. 164-71.
2. J. Gao, Y. He, D. Wang // J. Mater. Chem. Phys.
2010, v. 123, p. 731-736.
3. S. Venkataraj et al. // J. Appl. Phys. 2002, v. 92 (7),
p. 3599-3607.
4. J.W. Bae et al. // J. Metals and Materials
International. 2010, v. 16(3), p. 447-452.
5. X. Ling et al. // J. Vacuum. 2015, v. 119, p. 145-150.
6. Singh et al. // J. Appl. Surf. Sci. 2017, v. 419, p. 337-
341.
ISSN 1562-6016. ВАНТ. 2019. №1(119) 119
7. W.T. Tang et al. // J. Thin Solid Films. 2010, v. 518,
p. 5442-5446.
8. H.H. Zhang, C.Y. Ma, Q.Y. Zhang // J. Vacuum.
2009, v. 83 (11), p. 1311-1316.
9. T.S. Skoblo, S.P. Romaniuk, A.I. Sidashenko,
I.E. Garkusha, A.V. Taran, et al. // J. Adv. Microsc. Res.
2018, v. 13, p. 333-338.
10. A.V. Taran, I.E. Garkusha, V.S. Taran, et al. // J.
Adv. Microsc. Res. 2018, v. 13, p. 313-319.
11. V. Tereshin, A.N. Bandura, V. Taran, et al. //
Vacuum. 2004, v. 73, p. 555-560.
12. V.S. Taran, I.E. Garkusha, et al. Recent
developments of plasma-based technologies for
medicine and industry // Nukleonika. 2012, v. 57(2),
p. 277-282 (in Russian).
13. V. Gasilin, O. Shvets, V. Taran, et al. // J. Appl.
Plasma Science. 2005, v. 13, p. 87-93.
14. A. Kuwabara, T. Tohei, T. Yamamoto, I. Tanaka //
J. Phys. Rev. 2005, v. 71(6), p. 1-7.
15. D.B. Cullity. Elements of X-ray diffraction / 2nd Ed.
Wesley: “Addition”, 1978.
Article received 26.12.2018
АНТИКОРРОЗИОННЫЕ КЕРАМИЧЕСКИЕ ПОКРЫТИЯ НА ПОВЕРХНОСТИ СТЯГИВАЮЩИХ
МАГНИТОВ Nd-Fe-B
A.В. Taран, И.E. Гаркуша, В.С. Таран, А.И. Тимошенко, И.А. Мисирук, Т.С. Скобло, С.П. Романюк,
В.В. Стариков, A.A. Батурин, Г.П. Николайчук, Н.В. Пивовар, Ю.П. Гниденко
Представлены результаты вакуумно-дугового осаждения тонких покрытий ZrO2 для защиты поверхности
постоянных магнитов Nd-Fe-B, используемых в качестве стягивающих устройств в ортодонтии. Структура,
фазовый состав и механические свойства пленок двуокиси циркония были исследованы методами SEM,
XRD, EDX, XRF, наноиндентирования. Было обнаружено образование поликристаллических пленок ZrO2
моноклинной модификации со средним размером зерна 25 нм. Изучено влияние покрытия ZrO2 в качестве
барьера для защиты магнитов от коррозии в квазифизиологическом растворе 0,9 NaCl. Электрохимические
измерения показали хорошие барьерные свойства покрытия на образцах в среде физиологического раствора.
АНТИКОРОЗІЙНІ КЕРАМІЧНІ ПОКРИТТЯ НА ПОВЕРХНІ СТЯГУВАЛЬНИХ МАГНІТІВ Nd-Fe-B
A.В. Taран, І.Є. Гаркуша, В.С. Таран, О.І. Тимошенко, І.О. Місірук, Т.С. Скобло, С.П. Романюк,
В.В. Стариков, О.A. Батурин, Г.П. Ніколайчук, М.В. Пивовар, Ю.П. Гніденко
Представленo результати вакуумно-дугового осадження тонких покриттів ZrO2 для захисту поверхонь
постійних магнітів Nd-Fe-B, що використовуються як стягувальні пристрої в ортодонтії. Структура, фазовий
склад та механічні властивості плівки діоксиду цирконію були досліджені засобами SEM, XRD, EDX, XRF
та наноіндентування. Було виявлено утворення полікристалічних плівок ZrO2 моноклінної модифікації з
середнім розміром зерна 25 нм. Вивчено вплив покриття ZrO2 як бар’єру для захисту магнітів від корозії в
квазіфізіологічному розчині 0,9 NaCl. Електрохімічні виміри встановили хороші бар'єрні властивості
покриття на зразках у середовищі фізіологічного розчину.
|