Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets

The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, E...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Taran, A.V., Garkusha, I.E., Taran, V.S., Timoshenko, O.I., Misiruk, I.O., Skoblo, T.S., Romaniuk, S.P., Starikov, V.V., Baturin, A.A., Nikolaychuk, G.P., Pyvovar, N.V., Gnidenko, Yu.P.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/194629
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194629
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1946292025-02-09T13:44:07Z Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets Антикорозійні керамічні покриття на поверхні стягувальних магнітів Nd-Fe-B Антикоррозионные керамические покрытия на поверхности стягивающих магнитов Nd-Fe-B Taran, A.V. Garkusha, I.E. Taran, V.S. Timoshenko, O.I. Misiruk, I.O. Skoblo, T.S. Romaniuk, S.P. Starikov, V.V. Baturin, A.A. Nikolaychuk, G.P. Pyvovar, N.V. Gnidenko, Yu.P. Low temperature plasma and plasma technologies The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment. Представленo результати вакуумно-дугового осадження тонких покриттів ZrO₂ для захисту поверхонь постійних магнітів Nd-Fe-B, що використовуються як стягувальні пристрої в ортодонтії. Структура, фазовий склад та механічні властивості плівки діоксиду цирконію були досліджені засобами SEM, XRD, EDX, XRF та наноіндентування. Було виявлено утворення полікристалічних плівок ZrO₂ моноклінної модифікації з середнім розміром зерна 25 нм. Вивчено вплив покриття ZrO₂ як бар’єру для захисту магнітів від корозії в квазіфізіологічному розчині 0,9 NaCl. Електрохімічні виміри встановили хороші бар'єрні властивості покриття на зразках у середовищі фізіологічного розчину. Представлены результаты вакуумно-дугового осаждения тонких покрытий ZrO₂ для защиты поверхности постоянных магнитов Nd-Fe-B, используемых в качестве стягивающих устройств в ортодонтии. Структура, фазовый состав и механические свойства пленок двуокиси циркония были исследованы методами SEM, XRD, EDX, XRF, наноиндентирования. Было обнаружено образование поликристаллических пленок ZrO₂ моноклинной модификации со средним размером зерна 25 нм. Изучено влияние покрытия ZrO₂ в качестве барьера для защиты магнитов от коррозии в квазифизиологическом растворе 0,9 NaCl. Электрохимические измерения показали хорошие барьерные свойства покрытия на образцах в среде физиологического раствора. 2019 Article Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.77.-j; 81.20.-n https://nasplib.isofts.kiev.ua/handle/123456789/194629 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Taran, A.V.
Garkusha, I.E.
Taran, V.S.
Timoshenko, O.I.
Misiruk, I.O.
Skoblo, T.S.
Romaniuk, S.P.
Starikov, V.V.
Baturin, A.A.
Nikolaychuk, G.P.
Pyvovar, N.V.
Gnidenko, Yu.P.
Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
Вопросы атомной науки и техники
description The results of vacuum-arc deposition of thin ZrO₂ coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation method. It was revealed the formation of polycrystalline ZrO₂ films of monoclinic modification with average grain size 25 nm. The influence of the ZrO₂ coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment.
format Article
author Taran, A.V.
Garkusha, I.E.
Taran, V.S.
Timoshenko, O.I.
Misiruk, I.O.
Skoblo, T.S.
Romaniuk, S.P.
Starikov, V.V.
Baturin, A.A.
Nikolaychuk, G.P.
Pyvovar, N.V.
Gnidenko, Yu.P.
author_facet Taran, A.V.
Garkusha, I.E.
Taran, V.S.
Timoshenko, O.I.
Misiruk, I.O.
Skoblo, T.S.
Romaniuk, S.P.
Starikov, V.V.
Baturin, A.A.
Nikolaychuk, G.P.
Pyvovar, N.V.
Gnidenko, Yu.P.
author_sort Taran, A.V.
title Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
title_short Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
title_full Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
title_fullStr Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
title_full_unstemmed Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets
title_sort anti-corrosion ceramic coatings on the surface of nd-fe-b repelling magnets
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Low temperature plasma and plasma technologies
url https://nasplib.isofts.kiev.ua/handle/123456789/194629
citation_txt Anti-corrosion ceramic coatings on the surface of Nd-Fe-B repelling magnets / A.V. Taran, I.E. Garkusha, V.S. Taran, O.I. Timoshenko, I.O. Misiruk, T.S. Skoblo, S.P. Romaniuk, V.V. Starikov, A.A. Baturin, G.P. Nikolaychuk, N.V. Pyvovar, Yu.P. Gnidenko // Problems of atomic science and technology. — 2019. — № 1. — С. 116-119. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT taranav anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT garkushaie anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT taranvs anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT timoshenkooi anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT misirukio anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT skoblots anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT romaniuksp anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT starikovvv anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT baturinaa anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT nikolaychukgp anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT pyvovarnv anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT gnidenkoyup anticorrosionceramiccoatingsonthesurfaceofndfebrepellingmagnets
AT taranav antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT garkushaie antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT taranvs antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT timoshenkooi antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT misirukio antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT skoblots antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT romaniuksp antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT starikovvv antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT baturinaa antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT nikolaychukgp antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT pyvovarnv antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT gnidenkoyup antikorozíjníkeramíčnípokrittânapoverhnístâguvalʹnihmagnítívndfeb
AT taranav antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT garkushaie antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT taranvs antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT timoshenkooi antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT misirukio antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT skoblots antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT romaniuksp antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT starikovvv antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT baturinaa antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT nikolaychukgp antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT pyvovarnv antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
AT gnidenkoyup antikorrozionnyekeramičeskiepokrytiânapoverhnostistâgivaûŝihmagnitovndfeb
first_indexed 2025-11-26T10:42:00Z
last_indexed 2025-11-26T10:42:00Z
_version_ 1849849254269419520
fulltext ISSN 1562-6016. ВАНТ. 2019. №1(119) 116 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 116-119. ANTI-CORROSION CERAMIC COATINGS ON THE SURFACE OF Nd-Fe-B REPELLING MAGNETS A.V. Taran 1 , I.E. Garkusha 1,4 , V.S. Taran 1 , O.I. Timoshenko 1 , I.O. Misiruk 1 , T.S. Skoblo 2 , S.P. Romaniuk 2 , V.V. Starikov 3 , A.A. Baturin 3 , G.P. Nikolaychuk 3 , N.V. Pyvovar 4,5 , Yu.P. Gnidenko 4 1 National Science Center “Kharkov Institute of Physics and Technology”, Institute of Plasma Physics, Kharkiv, Ukraine; 2 Kharkov Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine; 3 National Technical University “Kharkov Polytechnic Institute”, Kharkiv, Ukraine; 4 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 5 College of Science of the University of Alabama in Huntsville, USA E-mail: avtaran@ukr.net The results of vacuum-arc deposition of thin ZrO2 coatings to protect the surface of Nd-Fe-B permanent magnets used as repelling devices in orthodontics are presented. The structure, phase composition and mechanical properties of zirconium dioxide films have been investigated by means of SEM, XRD, EDX, XRF, and nanoindentation method. It was revealed the formation of polycrystalline ZrO2 films of monoclinic modification with average grain size 25 nm. The influence of the ZrO2 coating in terms of its barrier properties for corrosion in quasi-physiological 0.9 NaCl solution has been studied. Electrochemical measurements indicated good barrier properties of the coating on specimens in the physiological solution environment. PACS: 52.77.-j; 81.20.-n INTRODUCTION Hard magnetic alloys (permanent magnets) are used as components in a wide range of industrial applications, in regulating and measuring controls and in medical equipment. Neodymium iron boron (Nd-Fe-B) or “neo” magnets offer the highest energy product of any material today and are available in a wide range of shapes, sizes and grades. However, the neo magnets have some limitations due to their corrosive behavior. Thus, for medical applications, a protective coating is highly recommended. In this case, zirconium dioxide in the form of thin buffer layer on magnet surface is a promising candidate, due to its biological inertness and corrosion resistance. Nd-Fe-B magnets are frequently used as repelling devices for orthodontics and are advantageous over other materials used to move teeth, such as push-coil or elastic chain [1]. Nd-Fe-B magnetic devices are offered as optimum and biologically safe force-generating system. Neo magnets possess continuous force over extended periods of time for various kinds of tooth movement, and have no friction. Disadvantages of their application are corrosion products which are toxic. Zirconium dioxide ZrO2 ceramics possesses high resistance to crack propagation, high fracture toughness, high thermal expansion coefficient (α=11x10 -6 /K, similar to some types of steel) and due to these properties, it is very much suitable for joining ceramic and steel. It possesses also excellent thermal insulation/low thermal conductivity (2.5 to 3 W/mK) [2]. Various deposition methods, namely thermal oxidation of zirconium films, electron beam evaporation, pulsed laser deposition, DC/RF magnetron sputtering, sol-gel process and spray pyrolysis were employed for preparation of ZrO2 thin films [3-8]. Physical vapor deposition (PVD) methods of coating application including vacuum arc evaporation in a reactive medium (oxygen, nitrogen) are widely used to obtain ceramic coatings with a high melting point [9- 12]. In our experiments, thin ZrO2 coatings were deposited using vacuum-arc evaporation with curvilinear filter for decreasing macroparticles (MPs) emitted from plasma flow in Bulat-type device. The structure, chemical and phase composition of the obtained ZrO2 coatings have been investigated. Corrosion experiments were carried out in physiological 0.9 % NaCl solution. 1. EXPERIMENTAL SETUP The ZrO2 coatings on Nd-Fe-B magnets were obtained in "Bulat" type device by condensing vacuum- arc plasma purified from macro-particulates by means of the curvilinear filter [13]. The general view of the magnets is shown in Fig. 1. Fig.1. General view of the Nd-Fe-B magnets http://medicine.karazin.ua/ mailto:avtaran@ukr.net ISSN 1562-6016. ВАНТ. 2019. №1(119) 117 The scheme of experimental equipment is shown in Fig. 2. The magnets 5×5×2 mm size were fixed in the holder that squeezed its opposite sides with a small effort. Chemically pure zirconium (99.999) was used as a cathode material. The chamber was preliminary pumped out to a pressure of 6×10 -5 Torr. The pulsed negative bias of 1000 V with frequency 50 kHz was applied to the sample holder from the source PS-2. The rotation of the holder was turned on, vacuum arc was ignited (Id = 115 A) and the four faces of the magnets were cleaned by zirconium ions in the pulsed mode: cleaning of 1.5 s and pause of 6 s; in total 15 cycles. Fig. 2. Scheme of experimental equipment: 1 – cathode; 2 – anode; 3 – electromagnetic coils; 4 – duct; 5 – baffles; 6 – samples; 7 – vacuum chamber; PS-1 – arc discharge power supply unit; PS-2 – source of pulsed negative bias Then the source PS-2 was turned off, the chamber was filled with oxygen to a pressure of about 4×10 –3 Torr and zirconium dioxide was deposited during 12 min. Then the vacuum chamber was opened, the magnets were installed in the other position and ZrO2 was deposited on uncoated faces for 7 min. The surface topography of ZrO2 was studied using JEOL JSM-6390LV scanning electron microscope (SEM) with an accelerating voltage of 20 kV, chemical composition was examined using energy-dispersive X-ray analysis (EDX). Energy-dispersive spectrometer SPRUT-K (AO Ukrrentgen, Ukraine) was used for X-ray fluorescent analysis and was equipped with Si (Li) Х-100 detector (Amptek, USA) in the arrangement with Si and KCl secondary target. Film thickness was determined by XRF examinations and comprised ~3 µm. X-ray diffraction (XRD) analysis were performed using DRON-3M device, under Cu–Kα radiation, monohromated by (002) HOPG in diffracted beam. The XRD line scans were performed in θ…2θ scanning mode where the incident angle θ and diffracted angle 2θ are scanned simultaneously. The nanohardness was measured by Nanoindenter G200 (USA). The loading and unloading rates of the nanoindentation were 10 mN/min. Samples were tested to a depth of 500 nm. 6 prints were made for each sample and the distance between prints were 15 μm. ZrO2 films have also been analyzed for their corrosion properties in 0.9 % NaCl quasi-physiological solution. 2. RESULTS AND DISCUSSION 2.1. COMPOSITION AND STRUCTURE Energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD) were used to determine the chemical and phase composition of the deposited films. EDX spectrum of the as-deposited ZrO2 films formed at oxygen partial pressure of 4.5×10 -3 Torr is shown in Fig. 3,a. The EDX spectrum consisted of the characteristic zirconium and oxygen peaks without presence of any other impurity peaks. The chemical content was Zr = 30.46 at. % and O = 69.54 at. % (Tabl. 1). It indicates that the deposited films were stoichiometric. There was no variation of the chemical composition in the films volume. а b Fig. 3. EDX spectrum (a) and XRD pattern from Zr-O film (b) Table 1 EDX chemical composition of Zr-O film Element Intensity wt. % at. % O 0.6336 28.59 69.54 Zr 0.9100 71.41 30.46 The main diffraction peaks at 26.7 o , 50 o , 56.9 o , and 61.5 o related to the (111), (211), (310) and (311) reflects of monoclinic phase of ZrO2 was monitored in XRD pattern (Fig. 3,b). The film is crystalline and exists in the single monoclinic ZrO2 phase according to JCPDF (file 37-1484) with lattice parameters a = 5.312; b = 5.212; c = 5.147. 118 ISSN 1562-6016. ВАНТ. 2019. №1(119) These results correlated well with the literature data which indicate that at low temperatures the most stable ZrO2 phase is monoclinic form, which occurs naturally as the Baddeleyite mineral [14]. At the temperature 1478 K and ambient pressure the tetragonal structure becomes thermodynamically stable. At 2650 K the tetragonal structure changes into the cubic calcium fluoride structure. The crystallite size of the deposited ZrO2 coatings was calculated from the full width at half maximum intensity (β) (FWHM) of the X-ray diffraction angle (θ) of the (111) peak and the wavelength (λ) of copper X- ray radiation using Debye-Scherrer’s relation [15], by taking into consideration that no strains were developed in the coatings: ,cos /K = D  (1) where K is a constant (K = 0.9 for copper X-ray radiation) and θ – the diffraction angle. Crystallite size of the zirconium oxide film was 25 nm. Fig. 4. SEM image of ZrO2 coating The surface morphology of deposited ZrO2 thin film was investigated using scanning electron microscopy. Fig. 4 demonstrates homogeneous and crack free surface of ZrO2 film. 2.2. MECHANICAL PROPERTIES Plasticity index H/E and the ratio H 3 /E* 2 (where E* = E/(l - μ 2 ) – the effective elastic modulus; μ – Poisson's ratio) are qualitative comparative characteristics of material plastic deformation resistance. The shear modulus (G) and yield stress (σT) are defined as: G = E/2 × (1 + μ) and σT = Hµ / 3. Table 2 Results of ZrO2 coating mechanical tests E, GPa H, GPa H/E H3/E*2 G, GPa σT, GPa 1 210.32 13.488 0.064 0.049 131.45 4.49 2 204.754 13.785 0.067 0.055 127.97 4.59 3 208.546 12.979 0.062 0.044 130.34 4.32 4 202.983 12.816 0.063 0.045 126.86 4.27 5 213.961 13.56 0.063 0.048 133.73 4.52 6 197.203 12.573 0.064 0.045 123.25 4.19 206.295 13.2 0.064 0.048 128.93 4.40 The results of H and E values for 6 prints, as well as G, σT, and H 3 /E* 2 parameters, are summarized in Tabl. 2. According to nanohardness tests, the average value of nanohardness for ZrO2 was 13.2 GPa, and the average value of elastic modulus was 206.295 GPa. 2.3. CORROSION PROPERTIES Uncoated Nd-Fe-B magnet showed an electrode potential E of – 0.7 V. The coating of the zirconium dioxide leads to significant passivation of the magnet surface. The formed film possesses a high degree of continuity even on the edges. It also lacked pores, which could be easily detectable by electrochemical testing. Electrode potentials of Nd-Fe-B magnet in initial state and Nd-Fe-B magnet with ZrO2 coating are presented in Fig. 5. 0 10 20 30 40 -0,8 -0,6 -0,4 -0,2 0,0 0,2 E , V , min 1 2 Fig. 5. Electrode potentials of Nd-Fe-B magnet in initial state (1) and Nd-Fe-B magnet with ZrO2 coating (2) CONCLUSIONS Monoclinic m-ZrO2 thin films have been synthesized on the surface of Nd-Fe-B magnets using vacuum-arc deposition with curvilinear filter in the presence of oxygen plasma in the “Bulat”-type device. SEM investigations revealed the formation of uniform and crack-free structure of the film. XRD data revealed the formation of fine-crystalline structured films with average grain size of ~25 nm. Corrosion experiments carried out in physiological 0.9 % NaCl solution showed significant passivation of the surface of the magnet with E turned into positive values. This indicates an increase of substrate resistance against electrochemical corrosion. The proposed technology can be useful for applying buffer ZrO2 coatings on Nd-Fe-B magnets used as repelling devices in orthodontics. REFERENCES 1. M. Prasad, M. Manoj-Kumar, et al. // J. Clin. Exp. Dent. 2016, v. 8 (2), p. 164-71. 2. J. Gao, Y. He, D. Wang // J. Mater. Chem. Phys. 2010, v. 123, p. 731-736. 3. S. Venkataraj et al. // J. Appl. Phys. 2002, v. 92 (7), p. 3599-3607. 4. J.W. Bae et al. // J. Metals and Materials International. 2010, v. 16(3), p. 447-452. 5. X. Ling et al. // J. Vacuum. 2015, v. 119, p. 145-150. 6. Singh et al. // J. Appl. Surf. Sci. 2017, v. 419, p. 337- 341. ISSN 1562-6016. ВАНТ. 2019. №1(119) 119 7. W.T. Tang et al. // J. Thin Solid Films. 2010, v. 518, p. 5442-5446. 8. H.H. Zhang, C.Y. Ma, Q.Y. Zhang // J. Vacuum. 2009, v. 83 (11), p. 1311-1316. 9. T.S. Skoblo, S.P. Romaniuk, A.I. Sidashenko, I.E. Garkusha, A.V. Taran, et al. // J. Adv. Microsc. Res. 2018, v. 13, p. 333-338. 10. A.V. Taran, I.E. Garkusha, V.S. Taran, et al. // J. Adv. Microsc. Res. 2018, v. 13, p. 313-319. 11. V. Tereshin, A.N. Bandura, V. Taran, et al. // Vacuum. 2004, v. 73, p. 555-560. 12. V.S. Taran, I.E. Garkusha, et al. Recent developments of plasma-based technologies for medicine and industry // Nukleonika. 2012, v. 57(2), p. 277-282 (in Russian). 13. V. Gasilin, O. Shvets, V. Taran, et al. // J. Appl. Plasma Science. 2005, v. 13, p. 87-93. 14. A. Kuwabara, T. Tohei, T. Yamamoto, I. Tanaka // J. Phys. Rev. 2005, v. 71(6), p. 1-7. 15. D.B. Cullity. Elements of X-ray diffraction / 2nd Ed. Wesley: “Addition”, 1978. Article received 26.12.2018 АНТИКОРРОЗИОННЫЕ КЕРАМИЧЕСКИЕ ПОКРЫТИЯ НА ПОВЕРХНОСТИ СТЯГИВАЮЩИХ МАГНИТОВ Nd-Fe-B A.В. Taран, И.E. Гаркуша, В.С. Таран, А.И. Тимошенко, И.А. Мисирук, Т.С. Скобло, С.П. Романюк, В.В. Стариков, A.A. Батурин, Г.П. Николайчук, Н.В. Пивовар, Ю.П. Гниденко Представлены результаты вакуумно-дугового осаждения тонких покрытий ZrO2 для защиты поверхности постоянных магнитов Nd-Fe-B, используемых в качестве стягивающих устройств в ортодонтии. Структура, фазовый состав и механические свойства пленок двуокиси циркония были исследованы методами SEM, XRD, EDX, XRF, наноиндентирования. Было обнаружено образование поликристаллических пленок ZrO2 моноклинной модификации со средним размером зерна 25 нм. Изучено влияние покрытия ZrO2 в качестве барьера для защиты магнитов от коррозии в квазифизиологическом растворе 0,9 NaCl. Электрохимические измерения показали хорошие барьерные свойства покрытия на образцах в среде физиологического раствора. АНТИКОРОЗІЙНІ КЕРАМІЧНІ ПОКРИТТЯ НА ПОВЕРХНІ СТЯГУВАЛЬНИХ МАГНІТІВ Nd-Fe-B A.В. Taран, І.Є. Гаркуша, В.С. Таран, О.І. Тимошенко, І.О. Місірук, Т.С. Скобло, С.П. Романюк, В.В. Стариков, О.A. Батурин, Г.П. Ніколайчук, М.В. Пивовар, Ю.П. Гніденко Представленo результати вакуумно-дугового осадження тонких покриттів ZrO2 для захисту поверхонь постійних магнітів Nd-Fe-B, що використовуються як стягувальні пристрої в ортодонтії. Структура, фазовий склад та механічні властивості плівки діоксиду цирконію були досліджені засобами SEM, XRD, EDX, XRF та наноіндентування. Було виявлено утворення полікристалічних плівок ZrO2 моноклінної модифікації з середнім розміром зерна 25 нм. Вивчено вплив покриття ZrO2 як бар’єру для захисту магнітів від корозії в квазіфізіологічному розчині 0,9 NaCl. Електрохімічні виміри встановили хороші бар'єрні властивості покриття на зразках у середовищі фізіологічного розчину.