High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak
D-shaped tokamak T-15MD is nowunder construction in the NRC “Kurchatov Institute”. Heavy ion beam probing (HIBP) is an important part of T-15MD diagnostic system. Calculations of the probing ions trajectories show that the beam will pass through the plasma about 1.0…1.5 m, which can lead to its sign...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194674 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak / N.A. Vadimov, G.A. Sarancha, M.A. Drabinskiy, A.V. Melnikov, L.G. Eliseev, Ph.O. Khabanov, N.K. Kharchev, O.D. Komarov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 200-203. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194674 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1946742025-02-23T18:16:19Z High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak Високовольтний стенд для випробування діагностики зондування пучком важких іонів на токамаці T-15MД Высоковольтный стенд для испытания диагностики зондирования пучком тяжелых ионов на токамаке T-15MД Vadimov, N.A. Sarancha, G.A. Drabinskiy, M.A. Melnikov, A.V. Eliseev, L.G. Khabanov, Ph.O. Kharchev, N.K. Komarov, O.D. Plasma diagnostics D-shaped tokamak T-15MD is nowunder construction in the NRC “Kurchatov Institute”. Heavy ion beam probing (HIBP) is an important part of T-15MD diagnostic system. Calculations of the probing ions trajectories show that the beam will pass through the plasma about 1.0…1.5 m, which can lead to its significant attenuation. HIBP operation requires obtaininga high-current long-focus probing beam of Tl+ ions (I = 200…400 μA, f = 4…6 m, d ≤ 10 mm). A high voltage (300 keV) test-benchto test such beams is eing created now. Numerical modeling shows the possibility of a beam formation with a current of 300 μA and diameter 12 mm at 6 m from the ion emitter. Зараз в НДЦ «Курчатовський інститут» ведеться будівництво токамака Д-образного перерізу Т-15МД. Зондування пучком важких іонів (ЗПВІ) є важливою частиною діагностичного комплексу Т-15МД. Розрахунки траєкторій зондувальних іонів показують, що пучок буде проходити у плазмі шлях довжиною 1,0…1,5 м, що може призводити до значного його ослаблення. Для забезпечення можливості вимірювань параметрів плазми потрібно отримати сильнострумових довгофокусних зондувальних пучків Tl+ (I = 200…400 мкА, f = 4…6 м, d ≤ 10 мм). На даний час у Курчатовському інституті створюється діагностичний стенд для вирішення цієї задачі. На цьому стенді будуть проводитися експерименти по фокусуванню іонних пучків з енергією до 300 кеВ, а також вивчатися властивості термоіонних емітерів і час їх життя. Розрахунки руху іонів в інжекторі показують можливість створення пучка струмом 300 мкА, діаметром 12 мм на відстані 6 м від іонного емітера. В НИЦ «Курчатовский институт» ведется строительство токамака Д-образного сечения Т-15МД. Зондирование пучком тяжелых ионов (ЗПТИ) является важной частью его диагностического комплекса. Расчеты траекторий зондирующих ионов показывают, что пучок будет проходить по плазме путь длиной 1,0…1,5 м, что может приводить к значительному его затуханию. Возможность измерения параметров плазмы требует получения сильноточных длиннофокусных зондирующих пучков ионов Tl+ (I = 200…400 мкА, f = 4…6 м, d ≤ 10 мм). Тестовый стенд для этой задачи сейчас создается. На этом стенде будут проводиться эксперименты по фокусировке ионных пучков с энергией до 300 кэВ, а также изучаться свойства термоионных эмиттеров и время их жизни. Расчеты движения заряженных частиц в ионнооптической системе инжектора показывают возможность создания пучка током 300 мкА, диаметром 12 мм на расстоянии 6 м от ионного эмиттера. This work was supported by Russian Science Foundation project 19-12-00312. A.V. Melnikov was partly supported by the Competitiveness Program of NRNU MEPhI. 2020 Article High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak / N.A. Vadimov, G.A. Sarancha, M.A. Drabinskiy, A.V. Melnikov, L.G. Eliseev, Ph.O. Khabanov, N.K. Kharchev, O.D. Komarov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 200-203. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 52.70.Nc https://nasplib.isofts.kiev.ua/handle/123456789/194674 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Plasma diagnostics Plasma diagnostics |
| spellingShingle |
Plasma diagnostics Plasma diagnostics Vadimov, N.A. Sarancha, G.A. Drabinskiy, M.A. Melnikov, A.V. Eliseev, L.G. Khabanov, Ph.O. Kharchev, N.K. Komarov, O.D. High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak Вопросы атомной науки и техники |
| description |
D-shaped tokamak T-15MD is nowunder construction in the NRC “Kurchatov Institute”. Heavy ion beam probing (HIBP) is an important part of T-15MD diagnostic system. Calculations of the probing ions trajectories show that the beam will pass through the plasma about 1.0…1.5 m, which can lead to its significant attenuation. HIBP operation requires obtaininga high-current long-focus probing beam of Tl+ ions (I = 200…400 μA, f = 4…6 m, d ≤ 10 mm). A high voltage (300 keV) test-benchto test such beams is eing created now. Numerical modeling shows the possibility of a beam formation with a current of 300 μA and diameter 12 mm at 6 m from the ion emitter. |
| format |
Article |
| author |
Vadimov, N.A. Sarancha, G.A. Drabinskiy, M.A. Melnikov, A.V. Eliseev, L.G. Khabanov, Ph.O. Kharchev, N.K. Komarov, O.D. |
| author_facet |
Vadimov, N.A. Sarancha, G.A. Drabinskiy, M.A. Melnikov, A.V. Eliseev, L.G. Khabanov, Ph.O. Kharchev, N.K. Komarov, O.D. |
| author_sort |
Vadimov, N.A. |
| title |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak |
| title_short |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak |
| title_full |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak |
| title_fullStr |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak |
| title_full_unstemmed |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak |
| title_sort |
high voltage test bench for heavy ion beam probe diagnostics on t-15md tokamak |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2020 |
| topic_facet |
Plasma diagnostics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194674 |
| citation_txt |
High voltage test bench for heavy ion beam probe diagnostics on T-15MD tokamak / N.A. Vadimov, G.A. Sarancha, M.A. Drabinskiy, A.V. Melnikov, L.G. Eliseev, Ph.O. Khabanov, N.K. Kharchev, O.D. Komarov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 200-203. — Бібліогр.: 18 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT vadimovna highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT saranchaga highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT drabinskiyma highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT melnikovav highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT eliseevlg highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT khabanovpho highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT kharchevnk highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT komarovod highvoltagetestbenchforheavyionbeamprobediagnosticsont15mdtokamak AT vadimovna visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT saranchaga visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT drabinskiyma visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT melnikovav visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT eliseevlg visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT khabanovpho visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT kharchevnk visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT komarovod visokovolʹtnijstenddlâviprobuvannâdíagnostikizonduvannâpučkomvažkihíonívnatokamacít15md AT vadimovna vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT saranchaga vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT drabinskiyma vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT melnikovav vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT eliseevlg vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT khabanovpho vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT kharchevnk vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md AT komarovod vysokovolʹtnyjstenddlâispytaniâdiagnostikizondirovaniâpučkomtâželyhionovnatokamaket15md |
| first_indexed |
2025-11-24T06:57:37Z |
| last_indexed |
2025-11-24T06:57:37Z |
| _version_ |
1849653940485881856 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2020. №6(130)
200 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 200-203.
https://doi.org/10.46813/2020-130-200
HIGH VOLTAGE TEST BENCH FOR HEAVY ION BEAM PROBE
DIAGNOSTICS ON T-15MD TOKAMAK
N.A. Vadimov
1,2
, G.A. Sarancha
1,2
, M.A. Drabinskiy
1
, A.V. Melnikov
1,2,3
, L.G. Eliseev
1
,
Ph.O. Khabanov
1
, N.K. Kharchev
1,4
, O.D. Komarov
5
1
NRC “Kurchatov Institute”, Moscow, Russia;
2
Moscow Institute of Physics and Technology, Moscow, Russia;
3
National Research Nuclear University “MEPhI”, Moscow, Russia;
4
Prokhorov General Physics Institute, Moscow, Russia;
5
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: vadimov.na@phystech.edu
D-shaped tokamak T-15MD is nowunder construction in the NRC "Kurchatov Institute". Heavy ion beam
probing (HIBP) is an important part of T-15MD diagnostic system. Calculations of the probing ions trajectories
show that the beam will pass through the plasma about 1.0…1.5 m, which can lead to its significant attenuation.
HIBP operation requires obtaininga high-current long-focus probing beam of Tl
+
ions (I = 200…400 μA,
f = 4…6 m, d ≤ 10 mm). A high voltage (300 keV) test-benchto test such beams is being created now. Numerical
modeling shows the possibility of a beam formation with a current of 300 μA and diameter 12 mm at 6 m from the
ion emitter.
PACS: 52.70.Nc
INTRODUCTION
T-15MD (R = 1.5 m, a = 0.67 m, Bt = 2 T,
Ipl = 2 MA) is a D-shaped tokamak that is currently
under construction in the National Research Center
“Kurchatov Institute” [1]. Heavy ion beam probe was
proposed to study plasma potential φ [2], its fluctuations
and also fluctuations of electron density ne and poloidal
magnetic field Bp [3]. HIBP is a unique tool to directly
measure plasma potential in magnetically confined
plasmas [4]. Measurements of plasma potential allow us
to study radial electric field [5] and its coupling on
transport processes including the transition to H-mode
[6]. This coupling has been studied during recent years,
but it still presents an open question of modern plasma
physics. As a multipurpose diagnostics HIBP is also
used, to study Alfven eigen modes [7], turbulent flows
[8] and plasma turbulence rotation [9, 10]. On top of
that, plasma density profile can also be retrieved from
the secondary beam current, which gives us an
additional information to study the evolution of the
plasma transport [11, 12].
The beam trajectory length in T-15MD is expected
to be higher than those in T-10 (3.5…4 m) tokamak [13]
and TJ-II stellarator [14], where HIBPs also operate.
Estimations show that probing beam path through
T-15MD plasma will be as long as 1.2…1.5 m [15].
With high plasma densities this will cause strong beam
attenuation, which can lead to substantial signal loss. To
operate HIBP with high beam attenuation, the beam
intensity ≥200 μA is required. Experiments show that
for Cs
+
beams the current up to 300 µA can be achieved
[16].
To create Tl
+
beams a high-voltage test bench is
being constructed. This test bench should mimic
conditions of T-15MD experiment (4…6 m ion flight
length, Ibeam = 200 µA, Ebeam= 300 keV).
New high capacity thermionic emitters are to be
produced for HIBP operation on T-15MD. The capacity
should allow an operation on ~ 200 µA for at least 1
week. The device for emitter manufacturing is also to be
designed in assembly with the test bench.
NUMERICAL MODELING
The calculations of the beam path and thickness
were done for the geometry of the beam injector,
presented in Figs. 1, 2. At first the calculation of the
electrostatic field of the electrodes inside the injector
was carried out. Then the evaluation of self-consistent
electric field and the tracing of a singly charged
thallium ions beam was computed by an iterative
method.At the current iteration there are two following
steps: (i) tracing the ion beam through calculated
electric field, (ii) computing the intrinsic electric field of
the beam. At the next iteration, the particle beam is
traced through the superposition of electrodes and the
beam fields from the previous iteration. Practice has
shown that the solution converges well at the third
iteration. Total beam current was calculated according
to the Child-Langmuir`s law, following [16]. The model
of a three-electrode lens (see Figs. 1, 2) was chosen as
the basis for the experiment and its numerical
simulation. Such three-electrode focusing system was
developed and tested on the injector of HIBP diagnostic
system at Uragan-2M stellarator in Kharkov, Ukraine in
2016-2017 [17, 18].
Numerical studies have shown the fundamental
possibility of both creating a far-focused ion beam (in
the region Ufoc [-2.0; -4.0] kV and Uextr [-1.0; -1.5]) for
small beam currents (Fig. 3), and quasi-parallel (with a
small angular divergence) for large ones (Fig. 4). To
check these results an experimental bench is designed.
mailto:vadimov.na@phystech.edu
ISSN 1562-6016. ВАНТ. 2020. №6(130) 201
TEST BENCH DESIGN
To verify numerical calculations of ion-optics system
of the HIBP injector, a high-voltage (300 kV≥U) test
bench was designed. It allows tostudy ion-optics system
and thermionic emitters’ properties, including beam
intensity, diameter and focal length. When the beam
will be obtained, it can also be used for adjustment and
calibration of the HIBP energy analyzer.
Fig. 1. Distribution of electrode potentials. Red -300 kV
(High Voltage, Ubeam), blue (extractor voltage, Uextr)
and violet (focusing, Ufoc) are counted from HV,
green – accelerating part 300(1-N/35) kV,
where N is the index number of electrode ring
Fig. 2. Typical configuration of equipotential surfaces
Fig. 3. Focus distribution depending on focusing and
extraction voltages for small beam currents
Fig. 5 demonstrates the design of the test bench. It
consists of three main parts: HIBP injector, thebeam-
line and a 3 m long beam flight tube. Total length of
beam trajectory is 5 m, which is close to T-15MD
conditions. The bench is placed on diagnostics platform
of the T-10 tokamak and will use T-10 HIBP high
voltage power supply.
Fig. 4. Beam diameter along the trajectory at
Ufoc = -10 kV, Uextr = -7 kV, Ibeam = 275 μA
Fig. 5. Technical design of the high-voltage test bench:
1 – HIBP injector; 2 – beam-line; 3 – beam flight tube;
4 – vacuum pumping system; 5 – wire sensors;
6 – Faraday cup
The whole system will be pumped out to high
vacuum of 10
-5
…10
-6
Torr by two vacuum units, each
equipped with two turbo-molecular pumps (60 l/s) and a
backing vacuum pump. The vacuum system is able to
provide high pumping rate to quickly adjust sensors and
swap thermionic emitters.
The experiment (Fig. 6) is designed as follows: Tl
+
ions extracted from the emitter are accelerated in the
electric field of the injector to energies up to
Ebeam = 300 keV. The beam-line contains a pair of
scanning plates that control beam direction. Changing
beam direction back and forth, its focus length, size and
profile can be measured using the set of wire sensors.
The wire signal depends on beam-line deflecting plate’s
voltage.Ion signal peaks appear when the beam is
crossing a wire. The Faraday cup placed at the end of
the flight tube allows measurements of the beam
current.
Fig. 7 demonstrates the current state of the test
bench assembly. Next steps are connecting vacuum
units, vacuum tests and installing the sensors.
Technology for the manufacture of zeolite
thermionic thallium sources is underway now. It is
foreseen the test of this technology and manufacturing
the emitters at the manufacturing unit coupled to test
bench through the vacuum system.
The manufacturing unit is shown in Figs. 8, 9. It will
be equipped with regulated heating transformer
202 ISSN 1562-6016. ВАНТ. 2020. №6(130)
220/20 V with high voltage insulation between
transformer windings, the emitter heating power up to
350 W for emitters’ manufacturing [17].
Fig. 6. The high-voltage test bench experiment scheme:
a – beam trajectory in the flight tube, s1-3 – wire
sensors; b – beam profile in a wire sensor, pale-red
circle – beam crossing the wire; c – dependency
of signal on wire sensors on scanning voltage
Fig. 7. Photo of the bench assembly: a – T-10 HIBP
high-voltage power supply; b – test bench
Emitter test includes two stages – ion current and
beam mass-spectrum measurements. The extracting
voltage is up to 10 kV for emission ability testing.
The heating unit will be covered with 20 mm thick
organic glass. Faraday cup will have a hole in order to
visually control the emitter. Also, one more window
with ordinary 10 mm thick glass will be placed near the
emitter-extractor unit for visual control of the emitter
manufacturing process.
The emitter’s thallium zeolite powder is loaded into
the cup of 8 mm diameter, 2 mm depth, made with
0.2…0.3 mm thick tantalum. Then this cup is placed to
the emitter heating filament and baked at 1250°C. The
emitter is ready when it reaches a uniform temperature
over its surface.Ion current will be measured by Faraday
cup with 100 kΩ load.
The beam mass-spectrum measurement will be
carried out by applying +200…+500 V to the emitter by
pulse generator of locking voltage to the extractor with
50…300 V amplitude and 30…50 µs duration. The ion
mass is detected by time-of-flight delay of the pulse ion
current to an additional collector with 1 kΩ load. The
time-of-flight distance must be as large as possible,
approximately 0.5 m.
Fig. 8. Schematics of emitter manufacturing and testing
unit
Fig. 9. Photo of the emitter manufacturing and testing
unit
CONCLUSIONS
The high-voltage test-bench to study the features of
the probing beam for T-15 MD HIBP is designed. It is
aimed to simulate the expected experimental conditions
of the machine (L = 6 m, Ebeam ~ 300 keV). Numerical
modeling shows the capability to get high-intensity
beam (300 μA) with 12 mm diameter at 6m from beam
accelerator.
ACKNOWLEDGEMENTS
This work was supported byRussian Science
Foundation project 19-12-00312. A.V. Melnikov was
partly supported by the Competitiveness Program of
NRNU MEPhI.
REFERENCES
1. A.V. Melnikov et al. Physical Program and
Diagnostics of the T-15 Upgrade Tokamak // Fusion
Engineering and Design. 2015, v. 96, 97, p. 306-310.
2. Yu.N. Dnestrovskij et al. Development of heavy ion
beam probe diagnostics // IEEE Transaction Plasma
Science. 1994, v. 22, p. 310-331.
ISSN 1562-6016. ВАНТ. 2020. №6(130) 203
3. A.V. Melnikov et al. Heavy ion beam probing –
diagnostics to study potential and turbulence in toroidal
plasmas // Nuclear Fusion. 2017, v. 57, p. 072004.
4. A.V. Melnikov. Applied and fundamental aspects of
fusion science // Nature Physics. 2016, v. 12, p. 386-
390.
5. A.V. Melnikov. Electric Potential in Toroidal
Plasmas // Springer Nature Switzerland AG. 2019,
p. 240.
6. A.V. Melnikov et al. The changes in plasma potential
and turbulent particle flux in the core plasma measured
by heavy ion beam probe during L-H transitions in the
TJ-II stellarator // Nuclear Fusion. 2013, v. 53,
p. 092002.
7. A.V. Melnikov et al. Internal measurements of
Alfvéneigenmodes with heavy ion beam probing in
toroidal plasmas // Nuclear Fusion. 2010, v. 50,
p. 084023.
8. L.G. Eliseev et al. Two point correlation technique
for the measurements of poloidal plasma rotation by
Heavy Ion Beam Probe // Plasma and Fusion Research.
2012, v. 7, p. 2402064.
9. L.G. Eliseev et al. Evaluation of Turbulent Particle
Flux by Heavy Ion Beam Probe in the T-10 Tokamak //
Plasma and Fusion Research. 2018, v. 13, p. 3402106.
10. A.V. Melnikov et al. Studies of poloidal rotation of
plasma density turbulence with HIBP in the T-10
tokamak // 46th EPS Conf. on Plasma Physics (Milano,
Italy, 2019) ECAv. 43A P5.1090.
11. Yu.N. Dnestrovskii et al. Density determination by
probing with heavy-ion beams // Soviet Journal of
Plasma Physics. 1986, v. 12, p. 130.
12. Ph.O. Khabanov et al. Density profile reconstruction
using HIBP in ECRH plasmas in the TJ-II stellarator //
Journal of Instrumentation. 2019, v. 14, p. C09033
13. A.V. Melnikov et al. Heavy ion beam probe design
and operation on the T-10 tokamak // Fusion
Engineering and Design. 2019, v. 146, Part A, p. 850-
853.
14. I.S. Bondarenko et al. Installation of an advanced
heavy ion beam diagnostic on the TJ-II stellarator //
Review of Scientific Instruments. 2001, v. 72, p. 583.
15. M.A. Drabinskiy et al. Conceptual design of the
heavy ion beam probe diagnostic for the T-15MD
tokamak // Journal of Instrumentation. 2019, v. 14,
p. C11027.
16. L.I. Krupnik et al. High-Intensity Thermoionic
Alkali Ion Sources for Plasma Diagnostics // IEEE
Transaction Plasma Science. 2008, v. 36, p. 1536-1545.
17. O.D. Komarov et al. Estimations of Plasma Potential
and Density by the Heavy Ion Beam Probing
Diagnostics on the Uragan - 2M Torsatron // Problems
of Atomic Science and Technology. Series «Plasma
Physics». 2016, № 6, p. 306-309.
18. A.I. Zhezhera et al. A New Control Unit for Probing
Ion Beam Forming in HIBP Diagnostic Systems
// Problems of Atomic Science and Technology. Series
«Plasma Physics». 2016, № 6, p. 310-313.
Article received 07.10.2020
ВЫСОКОВОЛЬТНЫЙ СТЕНД ДЛЯ ИСПЫТАНИЯ ДИАГНОСТИКИ ЗОНДИРОВАНИЯ
ПУЧКОМ ТЯЖЕЛЫХ ИОНОВ НА ТОКАМАКЕ T-15MД
Н.А. Вадимов, Г.А. Саранча, М.А. Драбинский, А.В. Мельников, Л.Г. Елисеев, Ф.О. Хабанов,
Н.К. Харчев, А.Д. Комаров
В НИЦ «Курчатовский институт» ведется строительство токамака Д-образного сечения Т-15МД.
Зондирование пучком тяжелых ионов (ЗПТИ) является важной частью его диагностического комплекса.
Расчеты траекторий зондирующих ионов показывают, что пучок будет проходить по плазме путь длиной
1,0…1,5 м, что может приводить к значительному его затуханию. Возможность измерения параметров
плазмы требует получения сильноточных длиннофокусных зондирующих пучков ионов Tl
+
(I = 200…400 мкА, f = 4...6 м, d ≤ 10 мм). Тестовый стенд для этой задачи сейчас создается. На этом стенде
будут проводиться эксперименты по фокусировке ионных пучков с энергией до 300 кэВ, а также изучаться
свойства термоионных эмиттеров и время их жизни. Расчеты движения заряженных частиц в ионно-
оптической системе инжектора показывают возможность создания пучка током 300 мкА, диаметром 12 мм
на расстоянии 6 м от ионного эмиттера.
ВИСОКОВОЛЬТНИЙ СТЕНД ДЛЯ ВИПРОБУВАННЯ ДІАГНОСТИКИ ЗОНДУВАННЯ
ПУЧКОМ ВАЖКИХ ІОНІВ НА ТОКАМАЦІ T-15MД
М.А. Вадимов, Г.А Саранча, М.А. Драбінський, О.В. Мельніков, Л.Г. Єлісєєв, П.О. Хабанов,
М.К. Харчев, О.Д. Комаров
Зараз в НДЦ «Курчатовський інститут» ведеться будівництво токамака Д-образного перерізу
Т-15МД. Зондування пучком важких іонів (ЗПВІ) є важливою частиною діагностичного комплексу Т-15МД.
Розрахунки траєкторій зондувальних іонів показують, що пучок буде проходити у плазмі шлях довжиною
1,0…1,5 м, що може призводити до значного його ослаблення. Для забезпечення можливості вимірювань
параметрів плазми потрібно отримати сильнострумових довгофокусних зондувальних пучків Tl
+
(I = 200…400 мкА, f = 4…6 м, d ≤ 10 мм). На даний час у Курчатовському інституті створюється
діагностичний стенд для вирішення цієї задачі. На цьому стенді будуть проводитися експерименти по
фокусуванню іонних пучків з енергією до 300 кеВ, а також вивчатися властивості термоіонних емітерів і час
їх життя. Розрахунки руху іонів в інжекторі показують можливість створення пучка струмом 300 мкА,
діаметром 12 мм на відстані 6 м від іонного емітера.
|