Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”

In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Gann, V.V., Gann, A.V., Borts, B.V., Karnaukhov, I.M., Parkhomenko, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/194680
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194680
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1946802025-02-09T13:41:23Z Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” Утворення пошкоджень у нейтроноутворюючий урановій мішені джерела нейтронів Дефектообразование в нейтронообразующей урановой мишени источника нейтронов Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Parkhomenko, A.A. Physics of radiation damages and effects in solids In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target give fragments of photo-fission. Проведено розрахунки швидкості утворення зміщень в урановій мішені джерела нейтронів ННЦ ХФТІ під впливом опромінення високоенергетичними електронами з енергією 100 МеВ. Визначено внесок пружних та непружних процесів: високоенергетичних електронів та гамма-квантів, фотонейтронів, осколків фотоподілу, пошкоджень від нейтронів. Установлено, що найбільшій внесок у швидкість утворення зміщень в урановій мішені створюють осколки фотоподілу. Проведен расчет скорости образования смещений в урановой мишени источника нейтронов ННЦ ХФТИ под действием облучения высокоэнергетическими электронами с энергией 100 МэВ. Рассмотрены вклады упругих и неупругих процессов: рассеяния высокоэнергетических электронов и гамма-квантов, рождения фотонейтронов, осколков фотоделения, повреждений от нейтронов. Установлено, что наибольший вклад в скорость образования повреждений в урановой мишени вносят осколки фотоделения. 2021 Article Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/194680 621.384.6 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Physics of radiation damages and effects in solids
Physics of radiation damages and effects in solids
spellingShingle Physics of radiation damages and effects in solids
Physics of radiation damages and effects in solids
Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Parkhomenko, A.A.
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
Вопросы атомной науки и техники
description In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target give fragments of photo-fission.
format Article
author Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Parkhomenko, A.A.
author_facet Gann, V.V.
Gann, A.V.
Borts, B.V.
Karnaukhov, I.M.
Parkhomenko, A.A.
author_sort Gann, V.V.
title Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
title_short Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
title_full Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
title_fullStr Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
title_full_unstemmed Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
title_sort radiation damage in uranium target of the accelerator driven system “kipt neutron source”
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Physics of radiation damages and effects in solids
url https://nasplib.isofts.kiev.ua/handle/123456789/194680
citation_txt Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gannvv radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource
AT gannav radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource
AT bortsbv radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource
AT karnaukhovim radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource
AT parkhomenkoaa radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource
AT gannvv utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív
AT gannav utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív
AT bortsbv utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív
AT karnaukhovim utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív
AT parkhomenkoaa utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív
AT gannvv defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov
AT gannav defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov
AT bortsbv defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov
AT karnaukhovim defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov
AT parkhomenkoaa defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov
first_indexed 2025-11-26T08:54:21Z
last_indexed 2025-11-26T08:54:21Z
_version_ 1849842488261476352
fulltext 24 ISSN 1562-6016. ВАНТ. 2021. №2(132) https://doi.org/10.46813/2021-132-024 UDC 621.384.6 RADIATION DAMAGE IN URANIUM TARGET OF THE ACCELERATOR DRIVEN SYSTEM “KIPT NEUTRON SOURCE” V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: gann @kipt.kharkov.ua In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT un- der electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic pro- cesses is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target give fragments of photo-fission. INTRODUCTION One of the most important scientific projects carried out in Ukraine is the creation at the NSC KIPT, together with the Argonne National Laboratory in the USA, a research nuclear facility "Neutron source based on a subcritical assembly driving by an electron accelerator" (hereinafter ADS “Neutron source”), as a stage for crea- tion nuclear reactors of the 5th generation [1]. The ADS "Neutron source" was constructed to study the proper- ties of accelerator driven subcritical nuclear systems, use neutrons in applied and fundamental scientific re- search, as production of medical isotopes, and for train- ing specialists in the field of nuclear energy use. The process of obtaining a high flux of neutrons in the ADS “Neutron source” is based on the multiplica- tion of primary neutrons in a subcritical assembly made of low-enriched uranium. A high-current accelerator of relativistic electrons (of energy 100 MeV, 1 mA) irradi- ating a neutron-producing target (NPT) is used to gener- ate external neutrons. High energy gamma quanta arise from bremsstrahlung of an electrons in the target mate- rial. They participate in photonuclear reactions on heavy nuclei (W or U) and knock out neutrons [2]. In uranium NPT, neutrons are also generated in the photo-fission reactions on U-238 nuclei. The target consists of a set of 66x66 mm square plates with gaps of 1.75 mm water between them Total thickness of the target is 80 mm. This design of the NPT gives the integral neutron yield 3.0∙10 14 n/s at total beam power [1]. Among the priority tasks facing the Project partici- pants is evaluation operation time of the facility indi- vidual elements, and, first of all, the resource of the NPT, which is determined by the value of the limiting dose of radiation damage in units of displacements per atom (dpa) for the target material. In articles [3–6] calculations of the radiation dam- age dose were carried out for various materials in dif- ferent ranges of electrons and gamma-quanta energies. In this paper, the radiation damage dose in a urani- um target was estimated for normal operation condi- tions, that is, under irradiation by electrons with an en- ergy of 100 MeV and by neutrons with integral fluxes of 10 19 ...10 20 n/cm 2 at relatively low temperatures of the target (no higher than 100 °С). Contributions of elastic and inelastic processes: scattering of high-energy elec- trons and gamma-quanta, production of photo-neutrons, damage from neutrons and from fragments of nuclear photo-fission were taken into account. 1. METHOD AND CALCULATION THE RADIATION DAMAGE DOSE 1.1. HIGH ENERGY ELECTRONS Electrons of MeV energy range when moving in a target lose their energy to excite and ionize atoms, to emit bremsstrahlung gamma rays and to create radiation damage in the material. The defect concentration achieved under irradiation by electrons with energy E can be described by the radi- ation dose D, which is characterized by the average number of displacements per atom of the material: D = D(E) Ф(Е) t, (1) where Ф is the electron flux, t is the irradiation time. The defect production cross section ( )D E is ex- pressed in the terms of the cross section for electron scattering on nuclei [7]: max min ( , ) ( ) ( ) T D T d E T E T dT dT     . (2) Here ( , ) /d E T dT is the cross section of the transfer of energy T to the nucleus during the scattering of an electron with energy E, dE is threshold energy for atom displacement ( dE = 38.5 eV for U), ( ) 0.8 / (2 )dT T E  is the cascade function of NRT-standard [8], 2 2 max ( ) 2 ( 2 ) / ( )e pT E E E m c Am c  is the maximal energy, transferred to the nuclei, me is the electron mass, mp – is the proton mass. The differential cross section of elastic scattering of an electron at an angle θ at the solid angle d in the second Born approximation is expressed by the follow- ing formula [9]:    2 2 2| ( ) | 1 sin ( / 2) sin( / 2) 1 sin( / 2) , R d F q d Z               (3) where σR – is the Rutherford elastic cross section of electron scattering on a point nucleus, F(q) – is the form ISSN 1562-6016. ВАНТ. 2021. №2(132) 25 factor of the nucleus, q is the momentum transferred to the nucleus, β = v / c, v is the electron velocity, c is the speed of light, α = 1/137 is the fine structure constant, 2 2 2 2 2 4 1 . 2 sin ( / 2) R e Ze m c             (4) Here Z – is the nuclear charge,   0 ( ) ( )exp( / ) ; ( ) / 1 exp ( ) / , F q r i q r dV r r R a         (5) where ( )r – is the density of nucleons in the nucleus, R ≈ 1.3 A 1/3 Fm is the radius of the nucleus, A is the atomic weight of the nucleus, a ≈ 0.55 Fm is the uncer- tainty of the nucleus boundary, 0 ≈ 0.17 n/Fm 3 . Fig. 1. Cross section for elastic scattering of electrons by the U-238 nucleus To use equation (2), in expression (3) one should pass from the scattering angle θ to the energy T trans- ferred to the recoil nucleus [10]: 2 2 2 2 2sin ( / 2) . 2 (1 ) q T M M       (6) Substituting (6) into (3), we get: max 4 . d d dT T d      (7) Fig. 2. Dependence of the defect production cross- section on the electron energy E in U The cross section for elastic scattering of electrons with energy E on the U-238 nucleus with energy trans- fer T is plotted in Fig. 1 [7]. Fig. 2 shows the dependence of the defect produc- tion cross section D on the electron energy for U-238 [7]. Using the data in Fig. 2 (cross section D = 235 barn), it is possible to calculate the rate of de- fect production DR  near the surface of a uranium target irradiated with electrons of energy of Е = 100 MeV. Taking into account the electron flux density Ф = 1.7∙10 14 e/(cm 2 ∙s) at beam current of 1 mA, we ob- tain the defect production rate R = 3.9∙10 -8 dpa. 1.2. HIGH ENERGY GAMMA-QUANTA When moving in a target, high-energy electrons lose their energy in the processes of ionization and emission of bremsstrahlung gamma-quanta. At energies above 7 MeV, the energy losses of electrons in uranium are determined by bremsstrahlung process: r dE E dx t   , where tr – is the radiation length (for urani- um tr ≈ 0.32 cm, we neglect the dependence on E). Thus, the dependence of the electron energy on the depth in the target is estimated by the equation: 0( ) exp( / )e rE x E x t  , where E0 – is the energy of the incident electrons. The linear radiation power is deter- mined by the formula // ( ) /e rdW dx E x t and the spectral distribution of the radiation is described by an approximate expression: 2 [ ( ) ] , e r E x Ed N dxdE E t       (8) where θ (x) – is the theta function (equal to one for x> 0 and to zero otherwise). Since the electron radiates mainly forward, the emit- ted photons are simply adding, and the spectrum at a depth x can be estimated by integrating (8) over path length of electron: 0 if ( ) ( ) 1 ln if ( ). e r e x E E x E tdN x dE E E E x E E                   (9) Fig. 3. Spectra of photons in U at different depths 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 10 100 1000 10000 100000 d  d T , b a rn / M e V T, MeV e -> U 0 20 40 60 80 100 0 50 100 150 200 250  D , b a rn E, MeV 5 10 15 20 25 30 35 40 45 50 0.0 0.1 0.2 0.3 0.4 0.5 0.6 d N /d E  E, MeV 26 ISSN 1562-6016. ВАНТ. 2021. №2(132) Fig. 3 shows the spectra of photons in uranium from electrons with an energy of 100 MeV at different depths (curves from bottom to top in order of increasing depth with a step of 0.1 cm). Knowing the photon spectra, it is possible for each depth to estimate the values of the photo-neutron yields from the (γ, n) and photo-fission reactions, the cross sections of which were taken from [11] and shown in Figs. 4 and 5. The integral cross sec- tion for the yield of photo-neutrons in a giant resonance at an energy of 11 MeV is 1.5 barn·MeV, and the inte- gral cross section for photo-fission is 1 barn·MeV with a maximum at an energy of 14 MeV. Fig. 4. Dependence of the reaction (γ, n) cross section on photon energy for U-238 Fig. 5. Dependence of the photo-fission cross section for U-238 on photon energy As a result, we have: the effective cross section for the production of photo-neutrons is 0.32 barn/e, and the effective cross section for photo-fission is 0.14 barn/e. These values are reached at a depth of 0.7 cm. Emitted photo-neutrons have an energy of about 1 MeV, while the recoil nucleus receive an energy of ~ 4000 eV and creates ~ 34 displaced atoms in uranium. Consequently, the cross-section of defect production from this process is 11 barn/e. Photo-fission produces 2 fragments with a total en- ergy of ~ 200 MeV, which create about 160.000 dis- placed atoms, which gives an effective cross section of ~ 22000 barn/e, the rate of defect formation is 3.7∙10 -6 dpa/s (0.32 dpa/day). Burnup of U-238 will be 0.7∙10 -3 per year, which approximately corresponds to this value in thermal reactors of the WWER type. 1.3. DAMAGE FROM NEUTRONS PRODUCED IN THE TARGET When gamma quanta move in a uranium target, neu- trons are produced through two channels: the production of photo-neutrons (γ, xn) and the production of neutrons due to photo-fission (γ, f) with effective cross sections of the order of 0.3 barn/e. Processes of neutron absorp- tion by nuclei (n, γ) take place as well. The neutron flux Ф (E, x) can be described by the energy spectrum (Fig. 6) and flux density along the target depth (Fig. 7) [2]. Fig. 6 Normalized spectrum of neutrons produced in the target irradiated with high-energy electrons Fig. 7 Neutron flux density over the depth of the tar- get irradiated by electrons with energy of 100 MeV The defect yield rate R (x) is related to the defect production cross section under neutron irradiation ( )Dn nE by the formula: ( ) ( ) ( , ) ,Dn n n n nR x E E x dE  (10) where ( )Dn nE for U-238 is plotted in Fig. 8 with blue line (see [12]). Ф(Еn, x) = Nt(En) φ(x) – is spectral densi- 0 5 10 15 20 25 30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  , b a rn E  , MeV 0 20 40 60 80 100 0.00 0.05 0.10 0.15 0.20  , b a rn E  , MeV 0.01 0.1 1 10 1E-3 0.01 0.1 1 R=5 cm L=10 cm 100 MeV e -> U ->  -> n N t [1 /M e V ] E n , MeV 0 1 2 3 4 5 6 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 R=5 cm L=10 cm 100 MeV e -> U ->  -> n Ф , n /c m 2 /e l z, cm ISSN 1562-6016. ВАНТ. 2021. №2(132) 27 ty of neutron flux, Nt (En) is the normalized neutron spectrum (see Fig. 6); φ(x) – is neutron flux density at a depth x (see Fig. 7). According to (10), the rate of dis- placement production from neutrons generated by the target is about R = 7∙10 -8 dpa/s. Fig. 8. Energy dependence of defect production cross sections in uranium under neutron irradiation 1.4. NEUTRONS FROM SUBCRITICAL ASSEMBLY The spectrum of neutrons Фn(En) – near the target surface from the SCA is shown in Fig. 9 [2]. Fig. 9. The spectrum of neutrons Фn(En) – near the sur- face of the target from the SCA Using formula (10), we obtain for the defect for- mation rate R about 10 -8 dpa/s. CONCLUSION The general picture of the radiation damage produc- tion in uranium target is presented in Table. The greatest contribution to the rate of damage pro- duction in the uranium target of the neutron source un- der irradiation with electrons with an energy of 100 MeV gives photo-fission fragments. Damage pro- duction rate is 3.7∙10 -6 dpa/s, whereas contribution of the rest processes (electrons, photo-neutrons, target neu- trons, neutrons from fuel assembly) amounts a few per- cent of this value. The defect formation cross section for elastic elec- tron scattering is consistent with the results of [10]. The large value 1000 of the DPA cross sections ratio for photo-fission to photo-neutron processes is consistent with the results of the article [4]. Electrons 100 MeV Photo- neu- trons Photo- fission Target neutrons Assembly neutrons Recoil energy Spectrum 4 keV 200 MeV 17 keV 17 keV DPA cross sections 235 barn 11 barn/e 22000 barn/e 400 barn 400 barn Damage rate, dpa/s 4∙10 -8 2∙10 -9 3.7∙10 -6 7∙10 -8 10 -8 Damage rate, dpa/day 3∙10 -3 1.5∙10 -4 0.3 6∙10 -3 10 -3 The results presented in the Table are based on well- known approaches, however, they are only estimates. Exact values can be obtained only using computer simu- lation of the ADS system. Acknowledgements. The authors are grateful to Marchenko Yu.A. for help in preparing the publication. REFERENCES 1. И.М. Карнаухов, И. Большинский, Б.В. Борц, Й. Гохар и др. Источник нейтронов ННЦ ХФТИ // ВАНТ. Серия «ФРП и РМ». 2012, №3(79), с. 3-17. 2. Y. Gohar, I. Bolshinsky, H. Belch, F. Dunn, R. Kellogg, T. Sofu, A. Talamo, Z. Zhong. Design and analyses of the KIPT source facility concept // National Science Сenter “Kharkоv Institute of Physics and Tech- nology”, Kharkiv, Ukraine, July 8–9, 2008. 3. В.Ф. Зеленский, В.А. Стратиенко, В.Н. Муш- ников, Н.Л. Емец. Экспрессная имитация реакторных повреждений материалов при помощи пучков гамма- квантов // Реакторное материаловедение. М.: «ЦНИИатоминформ», 1978, т. 1, с.154-193. 4. Н.Л. Емец, В.Ф. Зеленский, В.А. Кузьменко, Э.A. Резниченко, Ю.Н. Ранюк, Б.А. Шиляев, В.А. Ямницкий. Радиационное повреждение урана при облучении электронами с энергией до 20 МэВ // ВАНТ. Серия «ФРП и РМ». 1980, №3(14), с. 11-16. 5. В.В. Ганн, Н.Л. Емец, В.А. Кузьменко, Ю.Н. Ранюк, Р.П. Слабоспицкий, Б.А. Шиляев, О.В. Юдин, В.А. Ямницкий. Расчет профилей про- странственного распределения дефектов и продуктов ядерных реакций при облучении материалов высоко- энергетическими электронами и гамма-квантами // ВАНТ. Серия «ФРП и РМ». 1981, №2(16), с. 41-46. 6. В.В. Ганн, Л.С. Ожигов, В.А. Ямницкий, Б. Синх, Т. Лефферс, И. Бильде-Соренсон. Порооб- разование в чистом алюминии, облученном пучком высокоэнергетических электронов и гамма-квантов // ВАНТ. Серия «ФРП и РМ». 1983, №1(24), с. 41-46. 7. В.В. Ганн, О.В. Юдин. Дефектообразование в высокотемпературных сверхпроводниках при элек- тронном облучении // ВАНТ. Серия «ФРП и РМ». 1989, №1(48), с. 63-66. 8. M.J. Norgett, M.T. Robinson, I.M. Torrens. A proposed method of calculating displacement dose rates // Nucl. Engr. and Design. 1975, N 33(1), p. 50. 28 ISSN 1562-6016. ВАНТ. 2021. №2(132) 9. W.A. Mc Kinly, H. Feschbach. The Coulomb scat- tering of relativistic electrons by nuclei // Phys. Rev. 1947, v. 74, p. 1759-1763. 10. В.Ф. Зеленский, В.А. Стратиенко, В.К. Хорен- ко, Л.Д. Ярошевский. Дефектообразование в никеле под действием релятивистских электронов // ВАНТ. Серия «ФРП и РМ». 1978, №1(3), с. 22-25. 11. https://www.oecd- nea.org/janisweb/book/gammas/U238/ 12. https://www.oecd- nea.org/dbdata/jeff/jeff33/index.html Статья поступила в редакцию 12.03.2021 г. ДЕФЕКТООБРАЗОВАНИЕ В НЕЙТРОНООБРАЗУЮЩЕЙ УРАНОВОЙ МИШЕНИ ИСТОЧНИКА НЕЙТРОНОВ В.В. Ганн, А.В Ганн, Б.В. Борц, І.М. Карнаухов, А.А. Пархоменко Проведен расчет скорости образования смещений в урановой мишени источника нейтронов ННЦ ХФТИ под действием облучения высокоэнергетическими электронами с энергией 100 МэВ. Рассмотрены вклады упругих и неупругих процессов: рассеяния высокоэнергетических электронов и гамма-квантов, рождения фотонейтронов, осколков фотоделения, повреждений от нейтронов. Установлено, что наибольший вклад в скорость образования повреждений в урановой мишени вносят осколки фотоделения. УТВОРЕННЯ ПОШКОДЖЕНЬ У НЕЙТРОНОУТВОРЮЮЧИЙ УРАНОВІЙ МІШЕНІ ДЖЕРЕЛА НЕЙТРОНІВ В.В. Ганн, Г.В Ганн, Б.В. Борц, І.М. Карнаухов, О.О. Пархоменко Проведено розрахунки швидкості утворення зміщень в урановій мішені джерела нейтронів ННЦ ХФТІ під впливом опромінення високоенергетичними електронами з енергією 100 МеВ. Визначено внесок пруж- них та непружних процесів: високоенергетичних електронів та гамма-квантів, фотонейтронів, осколків фо- топоділу, пошкоджень від нейтронів. Установлено, що найбільшій внесок у швидкість утворення зміщень в урановій мішені створюють осколки фотоподілу. https://www.oecd-nea.org/janisweb/book/gammas/U238/ https://www.oecd-nea.org/janisweb/book/gammas/U238/ https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html