Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source”
In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron pr...
Збережено в:
| Дата: | 2021 |
|---|---|
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/194680 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194680 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1946802025-02-09T13:41:23Z Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” Утворення пошкоджень у нейтроноутворюючий урановій мішені джерела нейтронів Дефектообразование в нейтронообразующей урановой мишени источника нейтронов Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Parkhomenko, A.A. Physics of radiation damages and effects in solids In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target give fragments of photo-fission. Проведено розрахунки швидкості утворення зміщень в урановій мішені джерела нейтронів ННЦ ХФТІ під впливом опромінення високоенергетичними електронами з енергією 100 МеВ. Визначено внесок пружних та непружних процесів: високоенергетичних електронів та гамма-квантів, фотонейтронів, осколків фотоподілу, пошкоджень від нейтронів. Установлено, що найбільшій внесок у швидкість утворення зміщень в урановій мішені створюють осколки фотоподілу. Проведен расчет скорости образования смещений в урановой мишени источника нейтронов ННЦ ХФТИ под действием облучения высокоэнергетическими электронами с энергией 100 МэВ. Рассмотрены вклады упругих и неупругих процессов: рассеяния высокоэнергетических электронов и гамма-квантов, рождения фотонейтронов, осколков фотоделения, повреждений от нейтронов. Установлено, что наибольший вклад в скорость образования повреждений в урановой мишени вносят осколки фотоделения. 2021 Article Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/194680 621.384.6 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
| spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Parkhomenko, A.A. Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” Вопросы атомной науки и техники |
| description |
In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT under electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic processes is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target give fragments of photo-fission. |
| format |
Article |
| author |
Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Parkhomenko, A.A. |
| author_facet |
Gann, V.V. Gann, A.V. Borts, B.V. Karnaukhov, I.M. Parkhomenko, A.A. |
| author_sort |
Gann, V.V. |
| title |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” |
| title_short |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” |
| title_full |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” |
| title_fullStr |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” |
| title_full_unstemmed |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” |
| title_sort |
radiation damage in uranium target of the accelerator driven system “kipt neutron source” |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2021 |
| topic_facet |
Physics of radiation damages and effects in solids |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194680 |
| citation_txt |
Radiation damage in uranium target of the accelerator driven system “KIPT Neutron Source” / V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko // Problems of Atomic Science and Technology. — 2021. — № 2. — С. 24-28. — Бібліогр.: 12 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT gannvv radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource AT gannav radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource AT bortsbv radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource AT karnaukhovim radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource AT parkhomenkoaa radiationdamageinuraniumtargetoftheacceleratordrivensystemkiptneutronsource AT gannvv utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív AT gannav utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív AT bortsbv utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív AT karnaukhovim utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív AT parkhomenkoaa utvorennâpoškodženʹunejtronoutvorûûčijuranovíjmíšenídžerelanejtronív AT gannvv defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov AT gannav defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov AT bortsbv defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov AT karnaukhovim defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov AT parkhomenkoaa defektoobrazovanievnejtronoobrazuûŝejuranovojmišeniistočnikanejtronov |
| first_indexed |
2025-11-26T08:54:21Z |
| last_indexed |
2025-11-26T08:54:21Z |
| _version_ |
1849842488261476352 |
| fulltext |
24 ISSN 1562-6016. ВАНТ. 2021. №2(132)
https://doi.org/10.46813/2021-132-024
UDC 621.384.6
RADIATION DAMAGE IN URANIUM TARGET OF THE
ACCELERATOR DRIVEN SYSTEM “KIPT NEUTRON SOURCE”
V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, A.A. Parkhomenko
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkiv, Ukraine
E-mail: gann @kipt.kharkov.ua
In this work, the rate of radiation damage production in a uranium target of the neutron source at NSC KIPT un-
der electrons irradiation with an energy of 100 MeV was estimated. The contribution of elastic and inelastic pro-
cesses is determined: high-energy electrons and gamma quanta, photo-neutron production, fragments arising from
photo-fission, damage from neutrons. It was found that the main input into damage production in a uranium target
give fragments of photo-fission.
INTRODUCTION
One of the most important scientific projects carried
out in Ukraine is the creation at the NSC KIPT, together
with the Argonne National Laboratory in the USA, a
research nuclear facility "Neutron source based on a
subcritical assembly driving by an electron accelerator"
(hereinafter ADS “Neutron source”), as a stage for crea-
tion nuclear reactors of the 5th generation [1]. The ADS
"Neutron source" was constructed to study the proper-
ties of accelerator driven subcritical nuclear systems,
use neutrons in applied and fundamental scientific re-
search, as production of medical isotopes, and for train-
ing specialists in the field of nuclear energy use.
The process of obtaining a high flux of neutrons in
the ADS “Neutron source” is based on the multiplica-
tion of primary neutrons in a subcritical assembly made
of low-enriched uranium. A high-current accelerator of
relativistic electrons (of energy 100 MeV, 1 mA) irradi-
ating a neutron-producing target (NPT) is used to gener-
ate external neutrons. High energy gamma quanta arise
from bremsstrahlung of an electrons in the target mate-
rial. They participate in photonuclear reactions on heavy
nuclei (W or U) and knock out neutrons [2]. In uranium
NPT, neutrons are also generated in the photo-fission
reactions on U-238 nuclei.
The target consists of a set of 66x66 mm square
plates with gaps of 1.75 mm water between them Total
thickness of the target is 80 mm. This design of the NPT
gives the integral neutron yield 3.0∙10
14
n/s at total beam
power [1].
Among the priority tasks facing the Project partici-
pants is evaluation operation time of the facility indi-
vidual elements, and, first of all, the resource of the
NPT, which is determined by the value of the limiting
dose of radiation damage in units of displacements per
atom (dpa) for the target material.
In articles [3–6] calculations of the radiation dam-
age dose were carried out for various materials in dif-
ferent ranges of electrons and gamma-quanta energies.
In this paper, the radiation damage dose in a urani-
um target was estimated for normal operation condi-
tions, that is, under irradiation by electrons with an en-
ergy of 100 MeV and by neutrons with integral fluxes of
10
19
...10
20 n/cm
2
at relatively low temperatures of the
target (no higher than 100 °С). Contributions of elastic
and inelastic processes: scattering of high-energy elec-
trons and gamma-quanta, production of photo-neutrons,
damage from neutrons and from fragments of nuclear
photo-fission were taken into account.
1. METHOD AND CALCULATION THE
RADIATION DAMAGE DOSE
1.1. HIGH ENERGY ELECTRONS
Electrons of MeV energy range when moving in a
target lose their energy to excite and ionize atoms, to
emit bremsstrahlung gamma rays and to create radiation
damage in the material.
The defect concentration achieved under irradiation
by electrons with energy E can be described by the radi-
ation dose D, which is characterized by the average
number of displacements per atom of the material:
D = D(E) Ф(Е) t, (1)
where Ф is the electron flux, t is the irradiation time.
The defect production cross section ( )D E is ex-
pressed in the terms of the cross section for electron
scattering on nuclei [7]:
max
min
( , )
( ) ( )
T
D
T
d E T
E T dT
dT
. (2)
Here ( , ) /d E T dT is the cross section of the transfer
of energy T to the nucleus during the scattering of an
electron with energy E,
dE is threshold energy for atom
displacement (
dE = 38.5 eV for U), ( ) 0.8 / (2 )dT T E
is the cascade function of NRT-standard [8],
2 2
max ( ) 2 ( 2 ) / ( )e pT E E E m c Am c is the maximal
energy, transferred to the nuclei, me is the electron mass,
mp – is the proton mass.
The differential cross section of elastic scattering of
an electron at an angle θ at the solid angle d in the
second Born approximation is expressed by the follow-
ing formula [9]:
2 2 2| ( ) | 1 sin ( / 2)
sin( / 2) 1 sin( / 2) ,
R
d
F q
d
Z
(3)
where σR – is the Rutherford elastic cross section of
electron scattering on a point nucleus, F(q) – is the form
ISSN 1562-6016. ВАНТ. 2021. №2(132) 25
factor of the nucleus, q is the momentum transferred to
the nucleus, β = v / c, v is the electron velocity, c is the
speed of light, α = 1/137 is the fine structure constant,
2
2 2
2 2 4
1
.
2 sin ( / 2)
R
e
Ze
m c
(4)
Here Z – is the nuclear charge,
0
( ) ( )exp( / ) ;
( ) / 1 exp ( ) / ,
F q r i q r dV
r r R a
(5)
where ( )r – is the density of nucleons in the nucleus,
R ≈ 1.3 A
1/3
Fm is the radius of the nucleus, A is the
atomic weight of the nucleus, a ≈ 0.55 Fm is the uncer-
tainty of the nucleus boundary,
0 ≈ 0.17 n/Fm
3
.
Fig. 1. Cross section for elastic scattering of electrons
by the U-238 nucleus
To use equation (2), in expression (3) one should
pass from the scattering angle θ to the energy T trans-
ferred to the recoil nucleus [10]:
2 2
2
2
2sin ( / 2) .
2 (1 )
q
T
M M
(6)
Substituting (6) into (3), we get:
max
4
.
d d
dT T d
(7)
Fig. 2. Dependence of the defect production cross-
section on the electron energy E in U
The cross section for elastic scattering of electrons
with energy E on the U-238 nucleus with energy trans-
fer T is plotted in Fig. 1 [7].
Fig. 2 shows the dependence of the defect produc-
tion cross section D on the electron energy for U-238
[7].
Using the data in Fig. 2 (cross section
D = 235 barn), it is possible to calculate the rate of de-
fect production
DR near the surface of a uranium
target irradiated with electrons of energy of Е =
100 MeV. Taking into account the electron flux density
Ф = 1.7∙10
14
e/(cm
2
∙s) at beam current of 1 mA, we ob-
tain the defect production rate R = 3.9∙10
-8
dpa.
1.2. HIGH ENERGY GAMMA-QUANTA
When moving in a target, high-energy electrons lose
their energy in the processes of ionization and emission
of bremsstrahlung gamma-quanta. At energies above
7 MeV, the energy losses of electrons in uranium are
determined by bremsstrahlung process:
r
dE E
dx t
, where tr – is the radiation length (for urani-
um tr ≈ 0.32 cm, we neglect the dependence on E).
Thus, the dependence of the electron energy on the
depth in the target is estimated by the equation:
0( ) exp( / )e rE x E x t , where E0 – is the energy of the
incident electrons. The linear radiation power is deter-
mined by the formula
// ( ) /e rdW dx E x t and the
spectral distribution of the radiation is described by an
approximate expression:
2 [ ( ) ]
,
e
r
E x Ed N
dxdE E t
(8)
where θ (x) – is the theta function (equal to one for x> 0
and to zero otherwise).
Since the electron radiates mainly forward, the emit-
ted photons are simply adding, and the spectrum at a
depth x can be estimated by integrating (8) over path
length of electron:
0
if ( )
( )
1
ln if ( ).
e
r
e
x
E E x
E tdN x
dE E
E E x
E E
(9)
Fig. 3. Spectra of photons in U at different depths
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1E-6
1E-5
1E-4
1E-3
0.01
0.1
1
10
100
1000
10000
100000
d
d
T
,
b
a
rn
/
M
e
V
T, MeV
e -> U
0 20 40 60 80 100
0
50
100
150
200
250
D
,
b
a
rn
E, MeV
5 10 15 20 25 30 35 40 45 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6
d
N
/d
E
E, MeV
26 ISSN 1562-6016. ВАНТ. 2021. №2(132)
Fig. 3 shows the spectra of photons in uranium from
electrons with an energy of 100 MeV at different depths
(curves from bottom to top in order of increasing depth
with a step of 0.1 cm). Knowing the photon spectra, it is
possible for each depth to estimate the values of the
photo-neutron yields from the (γ, n) and photo-fission
reactions, the cross sections of which were taken from
[11] and shown in Figs. 4 and 5. The integral cross sec-
tion for the yield of photo-neutrons in a giant resonance
at an energy of 11 MeV is 1.5 barn·MeV, and the inte-
gral cross section for photo-fission is 1 barn·MeV with
a maximum at an energy of 14 MeV.
Fig. 4. Dependence of the reaction (γ, n) cross
section on photon energy for U-238
Fig. 5. Dependence of the photo-fission cross section
for U-238 on photon energy
As a result, we have: the effective cross section for
the production of photo-neutrons is 0.32 barn/e, and the
effective cross section for photo-fission is 0.14 barn/e.
These values are reached at a depth of 0.7 cm.
Emitted photo-neutrons have an energy of about
1 MeV, while the recoil nucleus receive an energy of
~ 4000 eV and creates ~ 34 displaced atoms in uranium.
Consequently, the cross-section of defect production
from this process is 11 barn/e.
Photo-fission produces 2 fragments with a total en-
ergy of ~ 200 MeV, which create about 160.000 dis-
placed atoms, which gives an effective cross section of
~ 22000 barn/e, the rate of defect formation is
3.7∙10
-6
dpa/s (0.32 dpa/day). Burnup of U-238 will be
0.7∙10
-3
per year, which approximately corresponds to
this value in thermal reactors of the WWER type.
1.3. DAMAGE FROM NEUTRONS PRODUCED
IN THE TARGET
When gamma quanta move in a uranium target, neu-
trons are produced through two channels: the production
of photo-neutrons (γ, xn) and the production of neutrons
due to photo-fission (γ, f) with effective cross sections
of the order of 0.3 barn/e. Processes of neutron absorp-
tion by nuclei (n, γ) take place as well. The neutron flux
Ф (E, x) can be described by the energy spectrum
(Fig. 6) and flux density along the target depth (Fig. 7)
[2].
Fig. 6 Normalized spectrum of neutrons produced in
the target irradiated with high-energy electrons
Fig. 7 Neutron flux density over the depth of the tar-
get irradiated by electrons with energy of 100 MeV
The defect yield rate R (x) is related to the defect
production cross section under neutron irradiation
( )Dn nE by the formula:
( ) ( ) ( , ) ,Dn n n n nR x E E x dE (10)
where ( )Dn nE for U-238 is plotted in Fig. 8 with blue
line (see [12]). Ф(Еn, x) = Nt(En) φ(x) – is spectral densi-
0 5 10 15 20 25 30
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
,
b
a
rn
E
, MeV
0 20 40 60 80 100
0.00
0.05
0.10
0.15
0.20
,
b
a
rn
E
, MeV
0.01 0.1 1 10
1E-3
0.01
0.1
1
R=5 cm
L=10 cm
100 MeV e -> U -> -> n
N
t
[1
/M
e
V
]
E
n
, MeV
0 1 2 3 4 5 6
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
R=5 cm
L=10 cm
100 MeV e -> U -> -> n
Ф
,
n
/c
m
2
/e
l
z, cm
ISSN 1562-6016. ВАНТ. 2021. №2(132) 27
ty of neutron flux, Nt (En) is the normalized neutron
spectrum (see Fig. 6); φ(x) – is neutron flux density at a
depth x (see Fig. 7). According to (10), the rate of dis-
placement production from neutrons generated by the
target is about R = 7∙10
-8
dpa/s.
Fig. 8. Energy dependence of defect production cross
sections in uranium under neutron irradiation
1.4. NEUTRONS FROM SUBCRITICAL
ASSEMBLY
The spectrum of neutrons Фn(En) – near the target
surface from the SCA is shown in Fig. 9 [2].
Fig. 9. The spectrum of neutrons Фn(En) – near the sur-
face of the target from the SCA
Using formula (10), we obtain for the defect for-
mation rate R about 10
-8
dpa/s.
CONCLUSION
The general picture of the radiation damage produc-
tion in uranium target is presented in Table.
The greatest contribution to the rate of damage pro-
duction in the uranium target of the neutron source un-
der irradiation with electrons with an energy of
100 MeV gives photo-fission fragments. Damage pro-
duction rate is 3.7∙10
-6
dpa/s, whereas contribution of
the rest processes (electrons, photo-neutrons, target neu-
trons, neutrons from fuel assembly) amounts a few per-
cent of this value.
The defect formation cross section for elastic elec-
tron scattering is consistent with the results of [10]. The
large value 1000 of the DPA cross sections ratio for
photo-fission to photo-neutron processes is consistent
with the results of the article [4].
Electrons
100 MeV
Photo-
neu-
trons
Photo-
fission
Target
neutrons
Assembly
neutrons
Recoil
energy
Spectrum 4 keV
200
MeV
17 keV 17 keV
DPA
cross
sections
235 barn
11
barn/e
22000
barn/e
400
barn
400
barn
Damage
rate,
dpa/s
4∙10
-8
2∙10
-9
3.7∙10
-6
7∙10
-8
10
-8
Damage
rate,
dpa/day
3∙10
-3
1.5∙10
-4
0.3 6∙10
-3
10
-3
The results presented in the Table are based on well-
known approaches, however, they are only estimates.
Exact values can be obtained only using computer simu-
lation of the ADS system.
Acknowledgements. The authors are grateful to
Marchenko Yu.A. for help in preparing the publication.
REFERENCES
1. И.М. Карнаухов, И. Большинский, Б.В. Борц,
Й. Гохар и др. Источник нейтронов ННЦ ХФТИ //
ВАНТ. Серия «ФРП и РМ». 2012, №3(79), с. 3-17.
2. Y. Gohar, I. Bolshinsky, H. Belch, F. Dunn,
R. Kellogg, T. Sofu, A. Talamo, Z. Zhong. Design and
analyses of the KIPT source facility concept // National
Science Сenter “Kharkоv Institute of Physics and Tech-
nology”, Kharkiv, Ukraine, July 8–9, 2008.
3. В.Ф. Зеленский, В.А. Стратиенко, В.Н. Муш-
ников, Н.Л. Емец. Экспрессная имитация реакторных
повреждений материалов при помощи пучков гамма-
квантов // Реакторное материаловедение. М.:
«ЦНИИатоминформ», 1978, т. 1, с.154-193.
4. Н.Л. Емец, В.Ф. Зеленский, В.А. Кузьменко,
Э.A. Резниченко, Ю.Н. Ранюк, Б.А. Шиляев,
В.А. Ямницкий. Радиационное повреждение урана
при облучении электронами с энергией до 20 МэВ //
ВАНТ. Серия «ФРП и РМ». 1980, №3(14), с. 11-16.
5. В.В. Ганн, Н.Л. Емец, В.А. Кузьменко,
Ю.Н. Ранюк, Р.П. Слабоспицкий, Б.А. Шиляев,
О.В. Юдин, В.А. Ямницкий. Расчет профилей про-
странственного распределения дефектов и продуктов
ядерных реакций при облучении материалов высоко-
энергетическими электронами и гамма-квантами //
ВАНТ. Серия «ФРП и РМ». 1981, №2(16), с. 41-46.
6. В.В. Ганн, Л.С. Ожигов, В.А. Ямницкий,
Б. Синх, Т. Лефферс, И. Бильде-Соренсон. Порооб-
разование в чистом алюминии, облученном пучком
высокоэнергетических электронов и гамма-квантов //
ВАНТ. Серия «ФРП и РМ». 1983, №1(24), с. 41-46.
7. В.В. Ганн, О.В. Юдин. Дефектообразование в
высокотемпературных сверхпроводниках при элек-
тронном облучении // ВАНТ. Серия «ФРП и РМ».
1989, №1(48), с. 63-66.
8. M.J. Norgett, M.T. Robinson, I.M. Torrens. A
proposed method of calculating displacement dose rates
// Nucl. Engr. and Design. 1975, N 33(1), p. 50.
28 ISSN 1562-6016. ВАНТ. 2021. №2(132)
9. W.A. Mc Kinly, H. Feschbach. The Coulomb scat-
tering of relativistic electrons by nuclei // Phys. Rev.
1947, v. 74, p. 1759-1763.
10. В.Ф. Зеленский, В.А. Стратиенко, В.К. Хорен-
ко, Л.Д. Ярошевский. Дефектообразование в никеле
под действием релятивистских электронов // ВАНТ.
Серия «ФРП и РМ». 1978, №1(3), с. 22-25.
11. https://www.oecd-
nea.org/janisweb/book/gammas/U238/
12. https://www.oecd-
nea.org/dbdata/jeff/jeff33/index.html
Статья поступила в редакцию 12.03.2021 г.
ДЕФЕКТООБРАЗОВАНИЕ В НЕЙТРОНООБРАЗУЮЩЕЙ УРАНОВОЙ МИШЕНИ
ИСТОЧНИКА НЕЙТРОНОВ
В.В. Ганн, А.В Ганн, Б.В. Борц, І.М. Карнаухов, А.А. Пархоменко
Проведен расчет скорости образования смещений в урановой мишени источника нейтронов ННЦ ХФТИ
под действием облучения высокоэнергетическими электронами с энергией 100 МэВ. Рассмотрены вклады
упругих и неупругих процессов: рассеяния высокоэнергетических электронов и гамма-квантов, рождения
фотонейтронов, осколков фотоделения, повреждений от нейтронов. Установлено, что наибольший вклад в
скорость образования повреждений в урановой мишени вносят осколки фотоделения.
УТВОРЕННЯ ПОШКОДЖЕНЬ У НЕЙТРОНОУТВОРЮЮЧИЙ УРАНОВІЙ МІШЕНІ
ДЖЕРЕЛА НЕЙТРОНІВ
В.В. Ганн, Г.В Ганн, Б.В. Борц, І.М. Карнаухов, О.О. Пархоменко
Проведено розрахунки швидкості утворення зміщень в урановій мішені джерела нейтронів ННЦ ХФТІ
під впливом опромінення високоенергетичними електронами з енергією 100 МеВ. Визначено внесок пруж-
них та непружних процесів: високоенергетичних електронів та гамма-квантів, фотонейтронів, осколків фо-
топоділу, пошкоджень від нейтронів. Установлено, що найбільшій внесок у швидкість утворення зміщень в
урановій мішені створюють осколки фотоподілу.
https://www.oecd-nea.org/janisweb/book/gammas/U238/
https://www.oecd-nea.org/janisweb/book/gammas/U238/
https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html
https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html
|