Control of ionization processes in magnetron sputtering system by changing magnetic field configuration
This work is devoted to measuring the function of the distribution of charged particles of gas-discharge plasma in a magnetron sputtering system under conditions of non-potential “earth”. Measurements are carried out with the help of a three-electrode probe, which is installed in the cathode sputter...
Gespeichert in:
| Datum: | 2021 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194765 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Control of ionization processes in magnetron sputtering system by changing magnetic field configuration / А.G. Chunadra, К.N. Sereda, I.K. Tarasov, V.A. Makhlai // Problems of atomic science and tecnology. — 2021. — № 1. — С. 102-105. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194765 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1947652025-02-10T00:12:57Z Control of ionization processes in magnetron sputtering system by changing magnetic field configuration Керування процесами іонізації в магнетронній розпорошувальній системі зміною конфігурацій магнітного поля Управление процессами ионизации в магнетронной распылительной системе сменой конфигураций магнитного поля Chunadra, А.G. Sereda, К.N. Tarasov, I.K. Makhlai, V.A. Low temperature plasma and plasma technologies This work is devoted to measuring the function of the distribution of charged particles of gas-discharge plasma in a magnetron sputtering system under conditions of non-potential “earth”. Measurements are carried out with the help of a three-electrode probe, which is installed in the cathode sputtering zone, with unsafe electrodes and housing. The selection of the analyzed particles was carried out through a screen located under floating potential. Effect of additional magnetic insulation anode of MSS МАG-5 on ion and electron distribution functions was investigated. Робота присвячена вимірюванню функції розподілу заряджених частинок газорозрядної плазми в магнетронній розпорошувальній системі в умовах непотенційної «землі». Вимірювання проведені за допомогою триелектродного зонду, який встановлено в зоні катодного розпилення, з незаземленими електродами і корпусом. Відбір досліджуваних частинок проводили через екран, розташований під плаваючим потенціалом. Досліджено вплив додаткової магнітоізоляції анода МРС МАГ-5 на функції розподілу іонів та електронів. Работа посвящена измерению функции распределения заряженных частиц газоразрядной плазмы в магнетронной распылительной системе в условиях непотенциальной «земли». Измерения проведены с помощью триэлектродного зонда, расположенного в зоне катодного распыления, с незаземленными электродами и корпусом. Отбор исследуемых частиц проводили через экран, находящийся под плавающим потенциалом. Исследовано влияние дополнительной магнитоизоляции анода МРС МАГ-5 на функции распределения ионов и электронов. 2021 Article Control of ionization processes in magnetron sputtering system by changing magnetic field configuration / А.G. Chunadra, К.N. Sereda, I.K. Tarasov, V.A. Makhlai // Problems of atomic science and tecnology. — 2021. — № 1. — С. 102-105. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 51.50.+v, 52.25.Jm https://nasplib.isofts.kiev.ua/handle/123456789/194765 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
| spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Chunadra, А.G. Sereda, К.N. Tarasov, I.K. Makhlai, V.A. Control of ionization processes in magnetron sputtering system by changing magnetic field configuration Вопросы атомной науки и техники |
| description |
This work is devoted to measuring the function of the distribution of charged particles of gas-discharge plasma in a magnetron sputtering system under conditions of non-potential “earth”. Measurements are carried out with the help of a three-electrode probe, which is installed in the cathode sputtering zone, with unsafe electrodes and housing. The selection of the analyzed particles was carried out through a screen located under floating potential. Effect of additional magnetic insulation anode of MSS МАG-5 on ion and electron distribution functions was investigated. |
| format |
Article |
| author |
Chunadra, А.G. Sereda, К.N. Tarasov, I.K. Makhlai, V.A. |
| author_facet |
Chunadra, А.G. Sereda, К.N. Tarasov, I.K. Makhlai, V.A. |
| author_sort |
Chunadra, А.G. |
| title |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| title_short |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| title_full |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| title_fullStr |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| title_full_unstemmed |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| title_sort |
control of ionization processes in magnetron sputtering system by changing magnetic field configuration |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2021 |
| topic_facet |
Low temperature plasma and plasma technologies |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194765 |
| citation_txt |
Control of ionization processes in magnetron sputtering system by changing magnetic field configuration / А.G. Chunadra, К.N. Sereda, I.K. Tarasov, V.A. Makhlai // Problems of atomic science and tecnology. — 2021. — № 1. — С. 102-105. — Бібліогр.: 7 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT chunadraag controlofionizationprocessesinmagnetronsputteringsystembychangingmagneticfieldconfiguration AT seredakn controlofionizationprocessesinmagnetronsputteringsystembychangingmagneticfieldconfiguration AT tarasovik controlofionizationprocessesinmagnetronsputteringsystembychangingmagneticfieldconfiguration AT makhlaiva controlofionizationprocessesinmagnetronsputteringsystembychangingmagneticfieldconfiguration AT chunadraag keruvannâprocesamiíonízacíívmagnetronníirozporošuvalʹníisistemízmínoûkonfíguracíimagnítnogopolâ AT seredakn keruvannâprocesamiíonízacíívmagnetronníirozporošuvalʹníisistemízmínoûkonfíguracíimagnítnogopolâ AT tarasovik keruvannâprocesamiíonízacíívmagnetronníirozporošuvalʹníisistemízmínoûkonfíguracíimagnítnogopolâ AT makhlaiva keruvannâprocesamiíonízacíívmagnetronníirozporošuvalʹníisistemízmínoûkonfíguracíimagnítnogopolâ AT chunadraag upravlenieprocessamiionizaciivmagnetronnoiraspylitelʹnoisistemesmenoikonfiguraciimagnitnogopolâ AT seredakn upravlenieprocessamiionizaciivmagnetronnoiraspylitelʹnoisistemesmenoikonfiguraciimagnitnogopolâ AT tarasovik upravlenieprocessamiionizaciivmagnetronnoiraspylitelʹnoisistemesmenoikonfiguraciimagnitnogopolâ AT makhlaiva upravlenieprocessamiionizaciivmagnetronnoiraspylitelʹnoisistemesmenoikonfiguraciimagnitnogopolâ |
| first_indexed |
2025-12-02T01:37:52Z |
| last_indexed |
2025-12-02T01:37:52Z |
| _version_ |
1850358607371042816 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. №1(131)
102 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2021, №1. Series: Plasma Physics (27), p. 102-105.
https://doi.org/10.46813/2021-131-102
CONTROL OF IONIZATION PROCESSES IN MAGNETRON
SPUTTERING SYSTEM BY CHANGING MAGNETIC FIELD
CONFIGURATION
А.G. Chunadra
1
, К.N. Sereda
1
, I.K. Tarasov
1,2
, V.A. Makhlai
1,2
1
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
2
Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and
Technology”, Kharkiv, Ukraine
E-mail: agchunadra@gmail.com
This work is devoted to measuring the function of the distribution of charged particles of gas-discharge plasma
in a magnetron sputtering system under conditions of non-potential "earth". Measurements are carried out with the
help of a three-electrode probe, which is installed in the cathode sputtering zone, with unsafe electrodes and
housing. The selection of the analyzed particles was carried out through a screen located under floating potential.
Effect of additional magnetic insulation anode of MSS МАG-5 on ion and electron distribution functions was
investigated.
PACS: 51.50.+v, 52.25.Jm
INTRODUCTION
Present day trends of producing thin coatings with
specified properties are based primarily on indicators of
economic efficiency and productivity, as well as on the
possibility of easy control and automation of production
conditions. According to this, the most promising
method is film deposition stimulated by plasma or so-
called ion-plasma sputtering. Magnetron sputtering
systems (MSS) occupy a special place among a wide
class of devices for generating a flow of precipitated
particles based on electrode erosion in a vacuum
discharge Currently, they are becoming one of the main
technological tools for obtaining thin coatings by
spraying materials under ion bombardment. The
efficiency of gas ionization has increased due to the use
of crossed electric and magnetic fields in these systems.
The plasma density has become tens of times greater
than in magnetic-free devices with cathode (diode)
sputtering. As a result, the ion current density on the
cathode and the ion sputtering rate increased
significantly. The working gas pressure was reduced.
Many characteristics of the deposited layers were
improved [1].
The works [2, 3] shown that application of
additional magnetic insulation of anode leads to
formation of anode magnetic trap for electrons of
discharge. It’s allows to increase efficiency of sputtering
of target of MSS as well as rate of coatings deposition.
The information about the ions energy distributions
is important for a better understanding of the effects
accompanied ion bombardment during magnetron
deposition of coatings in different deposition conditions.
The direct current magnetron discharge used in the
magnetron sputtering device [4] is characterized by a
reduced volume of discharge localization above the
cathode surface. A large value 0.04...0.12 T and strong
homogeneity of magnetic field of arched configuration
for both normal 150...350 T/m and tangencies directions
are attributes of such systems. In this regard, the direct
use of traditional diagnostic methods such as probe
measurements is extremely difficult. For
characterization of magnetron discharge structure by
means of electric probe [5], the experiments are carried
out using special magnetic systems with reduced value
of magnetic field. Another way is investigation of
discharge characteristics at relatively long distance from
cathode i.e. in area of weak magnetic fields.
This paper presents the results of measuring the
distribution functions of electrons and ions over
energies in the zone of regular location of the treated
surface. Measurements of the functions of the
distribution of charged particles entering the processed
samples from the discharge area were carried out by
means a multi-grid energy analyzer with using a
modernized technique based on the experimentally
measured dependence of the cut-off current on the cut-
off voltage.
1. EXPERIMENTAL EQUIPMENT
Experiments were carried out on a plant of type
NNV-6.6-I1, modernized for the use of planar MSS of
type МАG-5 with a tungsten target with a diameter of
110 mm. Experiments were carried out both without the
use of additional magnetic insulation of the anode, and
under conditions of formation of an additional anode
magnetic trap for electrons. For maximum localization
of the discharge combustion area, none of the discharge
system electrodes was grounded.
The working pressure in the chamber was set at
5∙10
-3
Torr and provided by continuous uniform
discharge of the working gas (argon) through the gas
distribution system directly to the discharge area.
Under these conditions, a stationary magnetron
discharge with parameters was ignited in the cathode-
anode gap of the MSS Up = 530 V and Ip = 0.5 A.
ISSN 1562-6016. ВАНТ. 2021. №1(131) 103
A capacitive type pulsed power supply unit with a
thyristor switch provided a single voltage pulse of 3 ms
duration and an amplitude up to 1.5 kV to the cathode-
anode gap. A single voltage pulse was applied between
the cathode and the MSS anode against the background
of a stationary magnetron discharge combustion
voltage. The maximum discharge current at a high-
voltage voltage pulse was Iimp = 16 A. The power supply
of the energy analyzer, MSS and pulse unit was carried
out through a distribution transformer, which provided
reliable isolation along the power supply circuits and
protection from parasitic signals.
During the experiments, the discharge current was
measured by a current transformer (Rogovsky belt).
Measurements of electron and ion energy distribution
functions were carried out using a multi-grid energy
analyzer (three-electrode probe), which was located
directly above the cathode sputtering zone [6, 7].
Selection of the analysed particles was carried out
through a screen located under floating potential. The
functions of electron and ion energy distribution were
calculated from the measured delay curves. The
standard measurement technique is to ground one of the
power supply terminals and the first grid of the energy
analyzer. In our case, both the MSS electrodes and the
three-electrode probe are not grounded due to design
features.
Fig. 1 is a flowchart of the apparatus for studying the
discharge parameters using a multi-grid analyzer.
During the measurements, the limiting diaphragm, the
first grid and the body of the energy analyzer were at
floating potential. The distance from the magnetron to
the limiting grid was 100 mm. The diameter of the
restriction diaphragm slot was 18 mm. Voltage of
± (0...150) V was fed to the grids 2, 3 of the energy
analyzer. Collector voltage is ± (0...100) V. Ion and
electronic distribution functions were obtained by
differentiating the volt-amperes characteristics of the
collector.
Fig. 1. Block-scheme of the installation for the study of
discharge parameters using a multi-grid analyzer:
1 – MSS; 2 – bounding diaphragm; 3 – energy analyzer;
PSM – magnetron power supply;
PSE1, 2 – energy analyzer power supplies
Some important points were taken into account
when designing a multi-grid energy analyzer:
а) the cell size of the input grid must not exceed two
Debye radius (rD). This is necessary so that the internal
potentials of the analyzer do not enter the external
region where the plasma is located. In our case, the
plasma density is about 10
10
…10
11
cm
-3
, then
rD 0.1…0.3 mm;
b) the design of the energy analyzer provided the
possibility of its disassembly, replacement of individual
elements and, if it is necessary, to change of the internal
configuration;
c) mesh size of input grid 0.2 mm, diameter of
stainless wire 0.05 mm. Collecting part is made in the
form of cylinder with maximum external diameter of
25 mm and height in assembled form of 27 mm.
2. RESULTS OF EXPERIMENTS AND
DISCUSSION
Figs. 2, 3 show the distribution functions of
electrons and ions at different values of the cut-off
potential applied to the networks 2 and 3 of the multiset
probe.
It was expected that electron and ion distribution
functions would have one maximum under the standard
MSS configuration without additional anode
magnetization. The presence of one maximum on the
distribution functions was assumed due to the formation
of one ionization zone in the cathode-anode gap, due to
the existence of a standard azimuth symmetric arched
magnetic trap over the target cathode.
a
b
Fig. 2. Electron (a) and ion (b) component of the MSS
distribution function without additional magnetic
insulation of the anode. Black line corresponds to the
stationary discharge, red – pulsed
1
2
3
PSM
PSE1
PSE1
104 ISSN 1562-6016. ВАНТ. 2021. №1(131)
The use of additional magnetic insulation of the
anode with the formation of an anode magnetic trap for
electrons should lead to the appearance of another
maximum on the distribution functions of electrons and
ions due to the formation of an additional anode
ionization zone.
a
b
Fig. 3. Electron (a) and ion (b) components of the MSS
distribution function in case of additional magnetic
insulation of the anode. Black line corresponds to the
stationary discharge, red ‒ pulsed
Under the conditions of the pulsed mode of
operation of the MSS, it was expected that the
maximum on the functions of the distribution of charged
particles would shift to the region of higher energies due
to the addition voltage.
However, as can be seen from Fig. 2, even under the
standard MSS configuration without an additional anode
magnetic trap, the presence of two maximums is
supposed on the electron and ion distribution functions.
But it is not very clearly recognized.
This type of energy distribution functions (with
multi-maximums) of charged particles in the MSS
allows us to conclude that the distribution of potential
drop in the interelectrode space of the MSS is
significantly non-monotonic. Each of the maximums on
the electron distribution function corresponds to a group
of electrons that are accelerated by an electric field in
the spatial layers of the potential drop in the
interelectrode space of the MSS.
Two maximums are also recognized in the ion
distribution function (especially clearly in the pulsed
mode of operation). The energy of the ion is determined
by the place of its birth in the discharge interval and the
difference in potentials that it passes after the act of
ionization. Therefore, the presence of several
maximums on the ion distribution function indicates the
formation of several spatially spaced ionization zones in
the discharge interval.
Such result can be explained either by additional
ionization on peripheral area outside MSS due to
unbalance of magnetic configuration, or by formation of
extended ionization zone, which is characteristic for
discharges in crossed electric and magnetic fields [4].
The use of additional magnetic insulation of the
anode ensures the complete elimination of unbalance of
the magnetic system MSS on the peripheral area and the
formation of the optimal configuration of the anode
magnetic trap [4].
The function of electron energy distribution under
conditions of additional magnetic insulation of the
anode (see Fig. 3,a) shows three clearly expressed
maximums. The appearing of these maximums can be
explained by the feature of the potential drop
distribution in the MSS interelectrode space. One
maximum is formed due to ionization in the main zone
of magnetron discharge within an arched magnetic trap
above the target cathode of the MSS. The second
appeared due to the formation of an extended ionization
zone. The third forms in an additional anode magnetic
trap, where conditions are created for the occurrence of
an additional non-independent discharge of magnetron
type.
The function of ion distribution over energies is
unexpected at the conditions of using additional
magnetic insulation of the anode (see Fig. 3,b). The four
maximums are clearly traced. The presence of such
maxima on the ion distribution function indicates the
formation of four spatially spaced specific zones in the
discharge interval.
The existence of three maximums can also be
explained by the formation of three ionization zones.
Those form in the main arch magnetic trap of the MSS,
in the additional anode magnetic trap and in the
extended ionization zone. It is same as for functions of
the distribution of electron. Nevertheless, the presence
of the fourth maximum on the ion function of
distribution indicates the formation of additional
ionization zone in the discharge and requires further
careful research.
In addition, it was expected a shift of maximum on
the functions of the distribution of charged particles to
the region of higher energies due to the additional
potential at the conditions of the pulsed mode of
operation of the MSS. However, it is not identified from
received experimental results clearly. Therefore, this
effect should be studied in future experiments.
Nevertheless, in generally, the ionization processes
determine the value of density in the discharge plasma,
the formation of additional ionization zones contributes
as well as to the intensification of the discharge. The
both electron and ion currents are growth as result of an
increase of the charged particles number in the plasma.
ISSN 1562-6016. ВАНТ. 2021. №1(131) 105
Thus, the presence of additional ionization should
significantly increase the efficiency and speed of the
spraying process due to increasing of amount of
sputtered material from the target-cathode by ion flow
in MSS.
CONCLUSIONS
The energy distribution functions have been
measured for electrons and ions emitted from the
discharge and delivered to processed samples in
magnetron sputtering systems.
It has been shown that the use of additional magnetic
insulation of the anode causes the formation of an anode
magnetic trap for electrons. It’s leads to the appearance
of at least two maximums on the distribution functions
of electrons and ions due to the formation of an
additional anode ionization zone.
REFERENCES
1. B.S. Danilin. Low temperature plasma application
for thin films deposition. M.: “Energoatomizdat”, 1989.
2. A.A. Bizyukov, K.N. Sereda, V.V. Sleptsov,
I.K. Tarasov, A.G. Chunadra. High-current pulsed
operation modes of the planar mss with magnetically
insulated anode without transition to the arc discharge //
Problems of Atomic Science and Technology. Series
“Plasma Physics” (18). 2012, № 6 (82), р. 190-192.
3. A.G. Chunadra, K.N. Sereda, I.K. Tarasov,
A.A. Bizyukov. Increasing of mass transfer efficiency at
magnetron deposition of metal coating // Problems of
Atomic Science and Technology. Series “Plasma
Physics” (21). 2015, № 1 (95), p. 181-183.
4. A.I. Kuzmichov. Magnetron sputtering system. Kiev:
“Avers”, 2008 (in Russian).
5. R. Huddlestone, S. Leonard. Diagnostics of plasma.
М.: "Mir", 1967, p. 515.
6. А.G. Chunadra, К.N. Sereda, I.K. Tarasov. Method
for measuring external and internal parameters of
plasma with ungrounded gas discharge electrodes //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2019, № 1, р. 219-221.
7. I.N. Sereda, A.F. Tseluyko. Probe methods of plasma
diagnostics: for undergraduate and postgraduate
students studying plasma diagnostics / V.N. Karazin
Kharkiv National University, 2015, 189 p.
Article received 19.01.2021
УПРАВЛЕНИЕ ПРОЦЕССАМИ ИОНИЗАЦИИ В МАГНЕТРОННОЙ РАСПЫЛИТЕЛЬНОЙ
СИСТЕМЕ СМЕНОЙ КОНФИГУРАЦИЙ МАГНИТНОГО ПОЛЯ
А.Г. Чунадра, К.Н. Середа, И.К. Тарасов, В.А. Махлай
Работа посвящена измерению функции распределения заряженных частиц газоразрядной плазмы в
магнетронной распылительной системе в условиях непотенциальной «земли». Измерения проведены с
помощью триэлектродного зонда, расположенного в зоне катодного распыления, с незаземленными
электродами и корпусом. Отбор исследуемых частиц проводили через экран, находящийся под плавающим
потенциалом. Исследовано влияние дополнительной магнитоизоляции анода МРС МАГ-5 на функции
распределения ионов и электронов.
КЕРУВАННЯ ПРОЦЕСАМИ ІОНІЗАЦІЇ В МАГНЕТРОННІЙ РОЗПОРОШУВАЛЬНІЙ СИСТЕМІ
ЗМІНОЮ КОНФІГУРАЦІЙ МАГНІТНОГО ПОЛЯ
А.Г. Чунадра, К.Н. Середа, І.К. Тарасов, В.О. Махлай
Робота присвячена вимірюванню функції розподілу заряджених частинок газорозрядної плазми в
магнетронній розпорошувальній системі в умовах непотенційної «землі». Вимірювання проведені за
допомогою триелектродного зонду, який встановлено в зоні катодного розпилення, з незаземленими
електродами і корпусом. Відбір досліджуваних частинок проводили через екран, розташований під
плаваючим потенціалом. Досліджено вплив додаткової магнітоізоляції анода МРС МАГ-5 на функції
розподілу іонів та електронів.
|