Spectroscopy of plasma with metal vapor admixtures
Wide class of diagnostic techniques of plasma of electric discharges in gases and liquids is presented. The admixture of metals vapors in plasma is common feature of these discharges. This one not only changes plasma properties, but gives an opportunity for its diagnostics. Experimental techniques,...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2019 |
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194901 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Spectroscopy of plasma with metal vapor admixtures / A.N. Veklich, M.M. Kleshich, S.O. Fesenko, V.F. Boretskij, V.Ye. Osidach, A.V. Lebid, A.I. Ivanisik, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 237-242. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194901 |
|---|---|
| record_format |
dspace |
| spelling |
Veklich, A.N. Kleshich, M.M. Fesenko, S.O. Boretskij, V.F. Osidach, V.Ye. Lebid, A.V. Ivanisik, A.I. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. 2023-12-01T13:51:14Z 2023-12-01T13:51:14Z 2019 Spectroscopy of plasma with metal vapor admixtures / A.N. Veklich, M.M. Kleshich, S.O. Fesenko, V.F. Boretskij, V.Ye. Osidach, A.V. Lebid, A.I. Ivanisik, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 237-242. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 52.70.Kz; 52.80.Mg; 52.80.Wq https://nasplib.isofts.kiev.ua/handle/123456789/194901 Wide class of diagnostic techniques of plasma of electric discharges in gases and liquids is presented. The admixture of metals vapors in plasma is common feature of these discharges. This one not only changes plasma properties, but gives an opportunity for its diagnostics. Experimental techniques, which allow to define electric arc discharge plasma properties in different media, and after all, plasma composition, are described. The techniques are based on optical emission or laser absorption spectroscopies approaches. Розглядаються методи діагностики плазми електричних розрядів у газах і рідині, відмінною рисою яких є наявність домішок парів металів. Властивості досліджуваної плазми, а також особливості її діагностики повністю визначаються такими домішками. Описані експериментальні методики дозволяють визначати не лише параметри, але і cклад плазми електричних розрядів у різних середовищах. У рамках цього дослідження використані методи оптичної емісійної або лазерної абсорбційної спектроскопії. Рассматриваются методы диагностики плазмы электрических разрядов в газах и жидкости, отличительной особенностью которых является наличие примесей паров металлов. Свойства исследуемой плазмы, а также особенности ее диагностики полностью определяются такими примесями. Описанные экспериментальные методики позволяют определять не только параметры, но и состав плазмы электрических разрядов в различных средах. В работе использованы методы оптической эмиссионной или лазерной абсорбционной спектроскопии. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Plasma diagnostics Spectroscopy of plasma with metal vapor admixtures Спектроскопія плазми з домішками парів металів Спектроскопия плазмы с примесями паров металлов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Spectroscopy of plasma with metal vapor admixtures |
| spellingShingle |
Spectroscopy of plasma with metal vapor admixtures Veklich, A.N. Kleshich, M.M. Fesenko, S.O. Boretskij, V.F. Osidach, V.Ye. Lebid, A.V. Ivanisik, A.I. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. Plasma diagnostics |
| title_short |
Spectroscopy of plasma with metal vapor admixtures |
| title_full |
Spectroscopy of plasma with metal vapor admixtures |
| title_fullStr |
Spectroscopy of plasma with metal vapor admixtures |
| title_full_unstemmed |
Spectroscopy of plasma with metal vapor admixtures |
| title_sort |
spectroscopy of plasma with metal vapor admixtures |
| author |
Veklich, A.N. Kleshich, M.M. Fesenko, S.O. Boretskij, V.F. Osidach, V.Ye. Lebid, A.V. Ivanisik, A.I. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. |
| author_facet |
Veklich, A.N. Kleshich, M.M. Fesenko, S.O. Boretskij, V.F. Osidach, V.Ye. Lebid, A.V. Ivanisik, A.I. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. |
| topic |
Plasma diagnostics |
| topic_facet |
Plasma diagnostics |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Спектроскопія плазми з домішками парів металів Спектроскопия плазмы с примесями паров металлов |
| description |
Wide class of diagnostic techniques of plasma of electric discharges in gases and liquids is presented. The admixture of metals vapors in plasma is common feature of these discharges. This one not only changes plasma properties, but gives an opportunity for its diagnostics. Experimental techniques, which allow to define electric arc discharge plasma properties in different media, and after all, plasma composition, are described. The techniques are based on optical emission or laser absorption spectroscopies approaches.
Розглядаються методи діагностики плазми електричних розрядів у газах і рідині, відмінною рисою яких є наявність домішок парів металів. Властивості досліджуваної плазми, а також особливості її діагностики повністю визначаються такими домішками. Описані експериментальні методики дозволяють визначати не лише параметри, але і cклад плазми електричних розрядів у різних середовищах. У рамках цього дослідження використані методи оптичної емісійної або лазерної абсорбційної спектроскопії.
Рассматриваются методы диагностики плазмы электрических разрядов в газах и жидкости, отличительной особенностью которых является наличие примесей паров металлов. Свойства исследуемой плазмы, а также особенности ее диагностики полностью определяются такими примесями. Описанные экспериментальные методики позволяют определять не только параметры, но и состав плазмы электрических разрядов в различных средах. В работе использованы методы оптической эмиссионной или лазерной абсорбционной спектроскопии.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194901 |
| citation_txt |
Spectroscopy of plasma with metal vapor admixtures / A.N. Veklich, M.M. Kleshich, S.O. Fesenko, V.F. Boretskij, V.Ye. Osidach, A.V. Lebid, A.I. Ivanisik, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 237-242. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT veklichan spectroscopyofplasmawithmetalvaporadmixtures AT kleshichmm spectroscopyofplasmawithmetalvaporadmixtures AT fesenkoso spectroscopyofplasmawithmetalvaporadmixtures AT boretskijvf spectroscopyofplasmawithmetalvaporadmixtures AT osidachvye spectroscopyofplasmawithmetalvaporadmixtures AT lebidav spectroscopyofplasmawithmetalvaporadmixtures AT ivanisikai spectroscopyofplasmawithmetalvaporadmixtures AT tmenovata spectroscopyofplasmawithmetalvaporadmixtures AT cressaulty spectroscopyofplasmawithmetalvaporadmixtures AT valensif spectroscopyofplasmawithmetalvaporadmixtures AT lopatkokg spectroscopyofplasmawithmetalvaporadmixtures AT aftandilyantsyg spectroscopyofplasmawithmetalvaporadmixtures AT veklichan spektroskopíâplazmizdomíškamiparívmetalív AT kleshichmm spektroskopíâplazmizdomíškamiparívmetalív AT fesenkoso spektroskopíâplazmizdomíškamiparívmetalív AT boretskijvf spektroskopíâplazmizdomíškamiparívmetalív AT osidachvye spektroskopíâplazmizdomíškamiparívmetalív AT lebidav spektroskopíâplazmizdomíškamiparívmetalív AT ivanisikai spektroskopíâplazmizdomíškamiparívmetalív AT tmenovata spektroskopíâplazmizdomíškamiparívmetalív AT cressaulty spektroskopíâplazmizdomíškamiparívmetalív AT valensif spektroskopíâplazmizdomíškamiparívmetalív AT lopatkokg spektroskopíâplazmizdomíškamiparívmetalív AT aftandilyantsyg spektroskopíâplazmizdomíškamiparívmetalív AT veklichan spektroskopiâplazmysprimesâmiparovmetallov AT kleshichmm spektroskopiâplazmysprimesâmiparovmetallov AT fesenkoso spektroskopiâplazmysprimesâmiparovmetallov AT boretskijvf spektroskopiâplazmysprimesâmiparovmetallov AT osidachvye spektroskopiâplazmysprimesâmiparovmetallov AT lebidav spektroskopiâplazmysprimesâmiparovmetallov AT ivanisikai spektroskopiâplazmysprimesâmiparovmetallov AT tmenovata spektroskopiâplazmysprimesâmiparovmetallov AT cressaulty spektroskopiâplazmysprimesâmiparovmetallov AT valensif spektroskopiâplazmysprimesâmiparovmetallov AT lopatkokg spektroskopiâplazmysprimesâmiparovmetallov AT aftandilyantsyg spektroskopiâplazmysprimesâmiparovmetallov |
| first_indexed |
2025-11-24T19:09:11Z |
| last_indexed |
2025-11-24T19:09:11Z |
| _version_ |
1850489328659070976 |
| fulltext |
PLASMA DIAGNOSTICS
ISSN 1562-6016. ВАНТ. 2019. №1(119)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 237-242. 237
SPECTROSCOPY OF PLASMA WITH METAL VAPOR ADMIXTURES
A.N. Veklich
1
, M.M. Kleshich
1
, S.O. Fesenko
1
, V.F. Boretskij
1
, V.Ye. Osidach
1
, A.V. Lebid
1
,
A.I. Ivanisik
1
, T.A. Tmenova
1,2
, Y. Cressault
2
, F. Valensi
2
, K.G. Lopatko
3
, Y.G. Aftandilyants
3
1
Taras Shevchenko Kyiv National University, Kyiv, Ukraine;
2
Universite Toulouse, UPS, INPT, LAPLACE, Toulouse, France;
3
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
E-mail: van@univ.kiev.ua
Wide class of diagnostic techniques of plasma of electric discharges in gases and liquids is presented. The
admixture of metals vapors in plasma is common feature of these discharges. This one not only changes plasma
properties, but gives an opportunity for its diagnostics. Experimental techniques, which allow to define electric arc
discharge plasma properties in different media, and after all, plasma composition, are described. The techniques are
based on optical emission or laser absorption spectroscopies approaches.
PACS: 52.70.Kz; 52.80.Mg; 52.80.Wq
INTRODUCTION
Studies of properties of electric arc discharge plasma
with metal admixtures attracts attention of researchers
both from the point of view of scientific challenges and
numerous applied problems. As known, processes of
electric arc welding and cutting, plasma surface
processing, operation of arc light sources and current
switching in electrical devices are followed by intense
evaporation of details’ and electrodes’ materials. The
alternate application of electric arc discharge plasma is
production of nanomaterials. All the mentioned
applications require development of diagnostic
techniques specifically for the case of electric arc
discharge plasma with admixtures of metal.
It is known that during the electrical circuit switching
the arc discharge may occur that may lead to contacts’
erosion, which, in turn, results in decrease of service time
of switches, contactors, etc. Because of this circumstance, a
great interest lies in studying of physical processes, which
take place in plasma media of such devices during the
commutation and on working surfaces of contacts.
Combination of high-melting components (for instance,
molybdenum, chrome, tungsten) and component with a
high electrical conductivity (copper) allows to obtain
materials with high exploitation characteristics under
conditions of electric arc. Results of investigation of
electric arc discharge plasma with admixtures of metals of
electrode origin allow to increase the erosion resistance of
electrodes due to optimization of material’s composition
and development of new technologies of their fabrication.
Taking this into account, it presents the vital
objective to develop diagnostic techniques of thermal
plasma with admixture of metals vapors, which takes
place in electric arc discharges, from one hand.
From other hand, there is increasing interest in plasma
discharge in liquid, mostly because of its importance in
electrical conductivity processes and its practical
applications in biology, chemistry, and electrochemistry.
Special place within the variety of its exploitations belongs
to the water treatment. Due to the low efficiency of the
conventional techniques, and presence of a number of
disadvantages in other developing and existing methods (i.e.
chlorination, ozonation, advanced oxidation processes,
photocatalysis) [1-3], application of the electrical discharges
in liquid has proven to be one of the most advanced and
affordable methods not only for the water treatment (remo-
val of organic compounds), but also in surface treatment and
plasma sterilizations (inactivation or killing of microorga-
nisms) [4-6]. Such discharges are the effective sources of
simultaneous production of intense UV radiation, shock
waves, and various chemical products, including OH, O,
HO2, and H2O2 from the electric breakdown in water [7, 8].
Moreover, shock waves produced by high-energy plasma
discharges inside liquids are used for various applications,
including underwater explosions [9], rock fragmentation
[10], and lithotripsy [8]. A great deal of work has been done
by Locke et al. [11], who presented the review of the current
status of research on the application of high-voltage electric
discharges for promoting chemical reactions in the aqueous
phase, with particular emphasis on applications to water
cleaning. Another important application of the underwater
electric discharges, which has attracted significant attention,
is the nanomaterial synthesis by plasma-liquid interactions,
including plasma-over-liquid and plasma-in-liquid
configurations [12].
The nature of the discharges in liquids is much less
understood and may be completely different from those for
discharges in gases, therefore, in all the mentioned
applications, it is important to understand the mechanism
and dynamics of the electric breakdown process in liquids.
Unfortunately, until now there are no complete physical
models of underwater discharges, which makes it of a great
scientific interest to investigate plasma discharges in liquid
media. Particularly, the studies, carried out in [13] and
[14], still is need in the extension aiming to contribute to
the better phenomenological understanding. Such
investigations are of great interest due to nanoparticles
interaction with biological environments. It was found that
colloidal substance is the most effective biological form of
nanoparticles [15]. Moreover, it is known that solutions of
silver and copper have bactericidal, antiviral, pronounced
antifungal and antiseptic effects [16], therefore they are
considered as perspective new biocides products.
The aim of this work is to present the overview of
peculiarities of spectroscopy techniques of both the
thermal plasma with admixture of metals vapors, which
takes place in electric arcs, and underwater discharges
plasma in reactors for metal nanoparticles generation.
mailto:van@univ.kiev.ua
238 ISSN 1562-6016. ВАНТ. 2019. №1(119)
1. OPTICAL EMISSION SPECTROSCOPY
OF THERMAL ELECTRIC ARC PLASMA
Vertically oriented electrical arc was initiated
between end-surfaces of non-cooled electrodes (Fig. 1).
Two types of composite Cu-Mo or Cu-Cr electrodes were
used, which were mounted into setup by draw bolt holders.
Fig. 1. Electrode assembly, scheme of power supply and
electrical parameters measurement
Discharge gap in all the experiments was 8 mm.
Electrodes were arranged vertically with their ends opposite
to each other. Cathode was installed above and anode – at
the bottom. Electric arc plasma parameters were studied at
values of discharge currents of 3.5 and 30 А in argon flow.
The arc was blown by the working gas flow along the
discharge axis using the nozzle. Working gas flow-rate was
6 l/min and was controlled using rotameter. Investigation of
flows of different gases shows that in such configuration and
gas flow-rate, the flow still remains laminar.
Electrical arc was powered by stabilized power source
PSconstant of a direct current of 3.5 А. Impulse power source
was connected in parallel PSpulse with a microprocessor
control. In order to prevent excessive evaporation and
electrical erosion of electrode material, impulses of 30 А
current and duration of 30 ms were imposed on "regular"
current of 3.5 А (Fig. 2). Emission registration starts at 7 ms
after high-current pulse initiation and remains near 3 ms.
Since electric arc in the given configuration of the
electrode arrangement can easily change its position in the
discharge gap, it is reasonable to use method of the rapid-
series tomographic registration of plasma emission.
For registration of spatial distribution of spectral
lines’ intensities of plasma emission, optical scheme
based on the MDR-12 (Čzerny-Turner) monochromator
was used (Fig. 3). Image of the electrical arc was focused
in the plane of the vertical entrance slit of
monochromator using long focal lens. In order to study
the transversal (radial) cross-sections of arc, the scheme
implements a Dove prism, which turns the image through
90°.
Rapid-series scanning of spatial distributions of
spectral lines’ intensities was ensured by linear CDD
sensor Sony ILX526A (B/W) containing 3000 pixels.
Specifics of the given scheme is the location of CCD
sensor in a sagittal focal plane of an astigmatic spectral
device, which allows to avoid the use of additional optical
devices.
Typical registered spatial distribution of spectral line
intensity (1 in Fig. 4) has a symmetrical shape and is
well approximated by Gaussian curve (2 in Fig. 4).
Х-coordinate in Fig. 4 corresponds to distance along
the entrance slit of a monochromator.
-20 -10 0 10 20 30 40 50
0
10
20
30
40
t, ms
0
10
20
30
40
50
60
70
t
Registration U, VI, A
UI
Fig. 2. Current and voltage oscillogram during the
impulse (Cu-Cr electrodes)
In order to process spatial distributions of intensities
the specially created software interface was used. Since
electric arc discharge plasma is non-stabilized in space
and time, for every spectral line the registration of 30-40
intensity distributions was performed with their
following statistical treatment. The interface allows to
exclude from consideration the unsymmetrical
distributions and distributions that exceeds the CCD
sensor’s dynamic range. Afterwards, approximation of
distribution by Gaussian function and normal averaging
of distribution series were performed.
Calculation of the spectral sensitivity was performed
exploiting the standard radiation source – calibrated
tungsten ribbon lamp. The emission spectrum was
registered using the experimental setup (see Fig. 3),
wherein instead of the electrode assembly the given
calibration lamp was installed. Spectral sensitivity of the
experimental setup (Fig. 5) was obtained by taking into
account the lamp radiation distribution and lamp’s glass
window transmission coefficient.
Since the setup in Fig. 3 allows only for the side
observation of the plasma object, the Abel inversion
technique [17] was performed for determination of local
emissivity values from the registered intensity
distributions.
Subsequently, local emissivity distributions were
used for a plasma temperature determination by
Boltzmann plot technique (Fig. 6). This technique is
based on measurement of intensities of spectral lines
emitted by a separate element, for instance, copper atom
or/and molybdenum. Therefore, significant attention is
paid to peculiarities of intensity registration taking into
account the spectral sensitivity of the registering device.
Further plasma diagnostics aiming the measurement
of plasma temperature by Boltzmann plot technique can
be complicated due to possible deviation from local
thermodynamic equilibrium (LTE).
One can see, that at the arc periphery (in contrast to
axial point) in plasma column of electric discharge in
argon flow between copper electrodes at current 3.5 A
two groups of atom energy levels are populated with
different excitation temperatures (Fig. 7).
So, obviously, the deviation from Boltzmann
distribution of energy level populations takes place in this
case just for copper atom in the investigated mode of arc
discharge plasma (see Fig. 7,b).
ISSN 1562-6016. ВАНТ. 2019. №1(119) 239
Fig. 3. Optical scheme of setup for registration of spatial distributions of spectral lines’ intensities
8 10 12 14 16
20
40
60
80
100
120
140
160
180
200
X, mm
1
2
I, a.u.
Fig. 4. Spatial distribution of Cu I 510.5 nm spectral
line intensity in middle cross-section of electric arc
discharge at 3.5 А between Cu-Сr electrodes:
1 – registered spatial distribution of spectral line
intensity; 2 – approximation by Gaussian curve
400 500 600 700 800 900 1000
0
20
40
60
80
100
l, nm
S(l), %
Fig. 5. Normalized spectral sensitivity of the
experimental setup
Determination of electron density of thermal electric
arc plasma in optical emission spectroscopy (OES)
commonly uses dependency of spectral lines’ profile
broadening on Ne as a result of the quadratic Stark effect
[18]:
Ne=K·Δλ ,
where К – Stark broadening parameter which defines the
electron density normalized by a line half-width, ∆λ – half-
width of a spectral line. Hence, for Ne determination it is
required to pick up the spectral line mechanism of
broadening of which is a quadratic Stark effect and to study
its line profile.
3 4 5 6 7
-45
-42
-39
-36
-33
E, eV
Mo I
ln(Il
3
/g
k
f
ki
) Cu I
Mo I
Mo I
Mo I
Mo I
Mo I
Mo I
Cu I
Fig. 6. Boltzmann plot involving Cu I and Mo I spectral
lines for the axial point of the middle cross-section of
plasma of electric arc discharge between Cu–Mo
electrodes at current 3.5 A in argon flow
The experimental setup for line profiles’ registration
consists of a Fabry-Perot interferometer and MDR-12
monochromator (Fig. 8). Transversal cross-section of
the electric arc discharge plasma channel was placed in
the focal plane of a collimator lens, which forms a
parallel beam. Interferometer plays a role of a device
with a high resolution. The second lens focuses image
(turned through 90° using Dove prism) and forms
interferential pattern on the vertical entrance slit of
monochromator.
Since spectra of plasma with metal vapour admixtures
contain a big amount of spectral lines, therefore,
experimental setup includes a monochromator, which
separates the necessary system of interferential maximums
out of the general picture. Direction of the interferometer’s
dispersion is oriented perpendicularly to the
monochromator’s dispersion direction, i.e. along its entrance
slit.
Interferogram (1 in Fig. 9) presents a combination of line
profiles of the selected spectral lines in different spatial
points of plasma object. Interval δλ contains region of the
emission spectrum formed by Fabry-Perot interferometer
and is called free spectral range of this device. Intrinsic curve
(see 2 in Fig. 9), plotted through the maximums of
interferogram characterises the spatial distribution of plasma
source emission intensity on the given wavelength. In case
240 ISSN 1562-6016. ВАНТ. 2019. №1(119)
of the arc channel’s symmetry in relation to longitudinal
axis, such intrinsic curve is also symmetrical and has an
axial maximum. Х-axis (see Fig. 9) corresponds to the
spatial point on the segment along the monochromator’s
entrance slit. In such a manner, every interferential
maximum can be associated with its distance from the arc
axis.
a
b
Fig. 7. Boltzmann plot involving Cu I spectral lines for
the axial (a) and periphery (b) points of the middle
cross-section of plasma of electric discharge between
Cu electrodes at current 3.5 A in argon flow
In addition, note that such technique of line profiles’
registration with Fabry-Perot interferometer in optical
scheme can be used as a convenient tool for testing of
possible self-absorption of spectral lines and,
furthermore, for estimation of atom concentrations in
arc plasma [19].
At the next step the calculation of equilibrium
plasma composition can be carried out and, as a result,
the content of different metal vapors in plasma can be
determined.
If plasma resides in the state of LTE, it can be
characterised by the set of equations which, primary,
depend on the particles which are contained in plasma
volume [18]. Experimentally determined radial profiles
of temperatures, electron density and ratio of emission
intensities of spectral lines are the initial parameters of
the system. In case of electric arc discharge plasma
between composite Cu-Mo electrodes in argon flow, the
attention is paid to argon atoms and ions. Besides, due
to the thermal effect of discharge on electrodes and their
further evaporation, plasma will contain atoms and ions
of copper and molybdenum.
The laser absorption spectroscopy can be used for
verification of results, obtained by OES, namely, of
metal vapor distribution in electric arc plasma [20].
The laser absorption spectroscopy technique was
realized in the experimental setup wherein electric arc
discharge plasma was examined by laser beam at
wavelength of Cu I 510.5 nm. Degree of absorption of
such emission in plasma is defined by population of
2
D5/2 energy level of copper atom.
So, two-dimensional spatial distribution of this level
populations and, finally, copper vapor distribution in
discharge gap can be obtained in LTE assumption.
The measured distribution of copper atom
concentration by this technique is possible to compare
with results obtained using the optical emission
spectroscopy (Fig. 10). One can concludes that the
results coincide within the range of an expected
accuracy; therefore, it means that assumption of a
plasma thermodynamic equilibrium is correct.
2. OPTICAL EMISSION SPECTROSCOPY
OF UNDERWATER ELECTRIC SPARK
DISCHARGE PLASMA
Colloid solutions of metal particles are obtained by
volumetric electric spark destruction of metal granules.
This method lies in simultaneous formation of spark
channels in contacts between the metal granules
immersed in a liquid. A pulsed voltage supply was used
on the base of the specially developed generator [13].
As a result of spark erosion, the part of metal of
granules evaporates and, being tempered into a liquid,
forms fine dispersion fraction of spark-erosive particles.
Optical emission spectroscopy methods were used for
diagnostics of underwater electric spark discharge plasma
between metal granules. Plasma emission was registered
by the SDH-IV (SOLAR Laser Systems) spectrometer.
Toshiba TCD 1304 AP linear image sensor was used as
CCD detector. Spectral sensitivity of spectrometer is
determined (Fig. 11) and was taken into account in all
obtained results. The entrance slit of spectrometer was
installed directly towards the quartz window mounted in
the bottom of the discharge chamber, which allowed to
register the integral spectrum of discharges within 8 ms
acquisition time. Experiments with granules of Cu, Al,
Mo, Cr, Mg, Ag, Fe, Mn, Co, and Si were performed.
An estimation of plasma parameters was realized for
case of copper granules. This is due to the fact that Cu
has been thoroughly studied and Cu I spectral lines and
their spectroscopic data, that can be recommended for
diagnostics of plasma with addition of copper, have
been previously selected [18]. The emission spectrum of
the discharge between copper granules registered in
spectrum range 440…900 nm is shown in Fig. 12.
This spectrum contains not only Cu I spectral lines,
but also oxygen triplet (λ=777 nm), and hydrogen
Balmer Hα and Hβ lines, which is typical for emission
spectrum of electric discharge plasma in water [21].
Similar to the case of thermal arc plasma discharge,
Boltzmann plot method was implemented as a tool for
excitation temperature determination [18] using spectral
lines of copper atom. The excitation temperature of
plasma in discharge between copper granules at 150 A
current was measured as T=(10600±1200) K.
4 6 8
-44
-40
-36
-32
E/k
B
, 10
4
K
ln(Jl
3
/fg), в.о.
4 6 8
-44
-40
-36
-32
E/k
B
, 10
4
K
ln(Jl
3
/fg), в.о.
a.u.
a.u.
ISSN 1562-6016. ВАНТ. 2019. №1(119) 241
Fig. 8. Optical scheme of the setup for spectral line profiles’ registration
6 7 8 9 10 11 12
20
30
40
50
60
70
I, a.u.
X, mm
dl
2
1
Fig. 9. Interferogram of Cu I 515.3 nm spectral line
which is emitted in the average cross-section of the
discharge at current of 30 А between Cu-Mo electrodes
0,0 0,5 1,0 1,5 2,0
Optical emission
spectroscopy
A
1.5 .10
15
10
15
5.10
14
NCu, cm
-3
r,mm
Laser absorption
spectroscopy
Fig. 10. Comparison of copper atoms’ concentration
determined by two independent techniques
The values of electron density were obtained using
Hβ, Hα lines from the following equations presented in
[21], which takes into account the ion dynamic effects:
for Hβ: ,
for Hα: .
Electron density for Cu I 515.3 nm line is obtained
from the linear interpolation from the table presented in
[22], whereas the theoretical and experimental Stark
widths of Cu I lines are listed for Ne = 10
17
cm
-3
and
Te = 10000 K. These values were assumed as
parameters for the estimations presented in this work. In
the frame of presented experiments, weak temperature
dependence of these constants is neglected. For the
selected lines, the influence of all other broadening
mechanisms (Doppler, Van der Waals) under these
experimental conditions (atmospheric pressure,
temperature around 10000 K) is not essential. The half-
width of the corresponding lines was determined from
the experimentally registered spectra. Electron density
is 1.56·10
17
cm
-3
in electric spark discharge plasma
between copper granules at current of I = 150 A.
350 400 450 500 550 600
2,0x10-7
4,0x10-7
6,0x10-7
S(l), a.u.
l, nm
Fig. 11. Spectral response of SDH-IV spectrometer
calculated using tungsten ribbon lamp as a standard
source of emission in a spectral range λ = 345…605 nm
500 600 700 800 900
0,0
5,0x1010
1,0x1011
1,5x1011
2,0x1011
2,5x1011
l, nm
I, a.u.
O
O
Hb
Ha
Cu
Cu
CuCu
Cu
Fig. 12. Emission spectra of electric spark discharge
plasma between copper granules: I = 150 A
CONCLUSIONS
Spectroscopy techniques of plasma with metal vapor
admixtures are developed. Namely, inhomogeneous and
non-uniform thermal plasma in gaseous media and
underwater point plasma source are considered.
The Boltzmann plot method is developed to use not
only for temperature measurement but for examination
of local thermodynamic equilibrium in different spatial
3 23 1.46808 10 ( [ ] / 4.8)e SN m w nm
3 23 1.47135 10 ( [ ] /1.098)e SN m w nm
242 ISSN 1562-6016. ВАНТ. 2019. №1(119)
points of both types of considered plasma sources as
well. The electron density is measured from width of
spectral lines broadened by both quadratic (copper) and
linear (Hα and Hβ) Stark effects in thermal and
underwater plasma.
Combination of optical emission and laser absorption
spectroscopies is recommended to validate the thermo-
dynamic equilibrium state in studied plasma objects.
REFERENCES
1. T.A. Ternes, R. Hirsch. Occurrence and behavior of X-ray
contrast media in sewage facilities and the aquatic environ-
ment // Environ. Sci. Technol. 2000, v. 34, p. 2741-2748.
2. J.K. Dunnick, R.L. Melnick. Assessment of the carcino-
genic potential of chlorinated water: experimental studies of
chlorine, chloramine and trihalomethanes // J. Nat. Cancer
Inst. 1993, v. 85, p. 817-22.
3. T.A. Ternes, J. Stueber, N. Herrmann, et al. Ozonation: a
tool for removal of pharmaceuticals, contrast media and
musk fragrances from wastewater // Water Res. 2003,
v. 37, p. 1976-1982.
4. N.Y. Babaeva, M.J. Kushner. Streamer branching: the
role of inhomogeneities and bubbles // IEEE Trans.
Plasma Sci. 2008, v. 36, p. 892-893.
5. P. Bruggeman, C. Leys. Non-thermal plasmas in and
in contact with liquids // Topical Review. J Phys D:
Appl. Phys. 2009, v. 42, p. 1-28.
6. J.S. Clements, M. Sato, R.H. Davis. Preliminary
investigation of prebreakdown phenomena and chemical
reactions using a pulsed high-voltage discharge in water
// IEEE Trans. Ind. Appl. 1987, v. 23, p. 224-235.
7. J.S. Chang, K. Urashima, Y. Uchida. Characteristics of pulsed
arc electrohydraulic discharges and their application to water
treatment // Res. Rep. Tokyo Denki Univ. 2002, v. 50, p. 1-12.
8. P. Sunka. Pulse electrical discharges in water and
their applications // Phys. Plasmas. 2001, v. 8, p. 2587-
2594.
9. H. Akiyama, T. Sakugawa, T. Namihira. Industrial
applications of pulsed power technology // IEEE Trans.
Dielectr. Electr. Insul. 2007, v. 14, p. 1051-1064.
10. H. Bluhm, W. Frey, H. Giese. Application of pulsed
HV discharges to material fragmentation and recycling
// IEEE Trans. Dielectr. Electr. Insul. 2000, v. 7, p. 625-
636.
11. B.R. Locke, M. Sato, P. Sunka, et al. Electrohydraulic
discharge and nonthermal plasma for water treatment //
Ind. Eng. Chem. Res. 2006, v. 45, p. 882-905.
12. Q. Chen, J. Li, Y. Li. A review of plasma–liquid
interactions for nanomaterial synthesis // J. Phys. D:
Appl. Phys. 2015, v. 48, p. 424005.
13. K.G. Lopatko, Y.G. Aftandiliants, A.N. Veklich, et al.
Enrichment of colloidal solutions by nanoparticles in
underwater spark discharge // Probl. of Atomic Sci. and Techn.
Ser. “Plasma Physics”. 2015, v. 95, № 1, p. 267-270.
14. Y. Cressault, Ph. Teulet, A. Gleizes. Peculiarities of
metal nanoparticles generation by underwater
discharges for biological applications // Proc. of the
XXXI Int. Conf. on Phen. in Ionized Gases – Granada.
Spain, 2013.
15. K.G. Lopatko, Eu.G. Aftandіlyants, S.M. Kalenska,
O.L Tonkha. Mother colloidal solution of metals // B01J
13/00 Patent of Ukraine № 38459, 2009.
16. Z. Xiu, Q. Zhang, H.L. Puppala. Negligible particle-
specific antibacterial activity of silver nanoparticles //
Nano. Lett. 2012, v. 12, p. 4271.
17. K. Bockasten. Transformation of observed radiances
into radial distribution of the emission of a plasma //
JOSA. 1961, v. 51, p. 943-947.
18. I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Semeny-
shyn. Spectroscopic data and Stark broadening of Cu I and
Ag I spectral lines: Selection and analysis // Advances in
Space Research. 2014, v. 54, p. 1254-1263.
19. V.F. Boretskij, К.Yu. Catsalap, E.A. Ershov-Pavlov
et al. Estimation of atomic density distribution in dc arc
plasma using self-absorbed emission lines // Probl. of
Atomic Sci. and Techn. Ser. “Plasma Physics”. 2015,
v. 95, № 1, p. 263-266.
20. R.V. Semenyshyn, A.N. Veklich, I.L. Babich, V.F. Boret-
skij. Spectroscopy peculiarities of thermal plasma of electric
arc discharge between electrodes with Zn admixtures //
Advances in Space Research. 2014, v. 54, p. 1235-1241.
21. M.A. Gigosos, M.A. Gonzalez, V. Cardenoso. Computer
simulated Balmer-alpha-beta and -gamma Stark line profiles
for non-equilibrium plasmas diagnostics // Spectrochim.
Acta Part B. 2003, v. 58, p. 1489-1504.
22. R. Konjević, N. Konjević. Stark broadening and shift of
neutral copper spectral lines // Fizika. 1986, v. 18, p. 327-
335 (in Russian).
Article received 17.12.2018
СПЕКТРОСКОПИЯ ПЛАЗМЫ С ПРИМЕСЯМИ ПАРОВ МЕТАЛЛОВ
А.Н. Веклич, М.М. Клешич, С.А. Фесенко, В.Ф. Борецкий, В.Е. Осидач, А.В. Лебедь, А.И. Иванисик,
Т.А. Тменова, Я. Кресо, Ф. Валенси, К.Г. Лопатько, Е.Г. Афтандилянц
Рассматриваются методы диагностики плазмы электрических разрядов в газах и жидкости, отличительной
особенностью которых является наличие примесей паров металлов. Свойства исследуемой плазмы, а также
особенности ее диагностики полностью определяются такими примесями. Описанные экспериментальные
методики позволяют определять не только параметры, но и состав плазмы электрических разрядов в различных
средах. В работе использованы методы оптической эмиссионной или лазерной абсорбционной спектроскопии.
СПЕКТРОСКОПІЯ ПЛАЗМИ З ДОМІШКАМИ ПАРІВ МЕТАЛІВ
А.М. Веклич, М.М. Клешич, С.О. Фесенко, В.Ф. Борецький, В.Є. Осідач, А.В. Лебідь, А.І. Іванісік,
Т.А. Тменова, Я. Кресо, Ф. Валенсі, К.Г. Лопатько, Є.Г. Афтанділянц
Розглядаються методи діагностики плазми електричних розрядів у газах і рідині, відмінною рисою яких є
наявність домішок парів металів. Властивості досліджуваної плазми, а також особливості її діагностики
повністю визначаються такими домішками. Описані експериментальні методики дозволяють визначати не
лише параметри, але і склад плазми електричних розрядів у різних середовищах. У рамках цього
дослідження використані методи оптичної емісійної або лазерної абсорбційної спектроскопії.
|