Dislocation kinetics during plastic deformation of two-dimensional polycrystals

The dislocation-kinetic approach is applied to the study of plastic flow of plate specimens of two-dimensional polycrystals of high purity metals under uniaxial tension with a constant strain rate at moderate temperatures. A dislocation-kinetic equation is formulated. It takes into account the role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Badiyan, E.E., Tonkopryad, A.G., Ftomov, Ye.V., Shekhovtsov, O.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/194932
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dislocation kinetics during plastic deformation of two-dimensional polycrystals / E.E. Badiyan, A.G. Tonkopryad, Ye.V. Ftomov, O.V. Shekhovtsov // Problems of atomic science and technology. — 2019. — № 2. — С. 25-29. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194932
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1949322025-02-09T10:14:14Z Dislocation kinetics during plastic deformation of two-dimensional polycrystals Дислокаційна кінетика при пластичній деформації двовимірних полікристалів Дислокационная кинетика при пластической деформации двумерных поликристаллов Badiyan, E.E. Tonkopryad, A.G. Ftomov, Ye.V. Shekhovtsov, O.V. Physics of radiation damages and effects in solids The dislocation-kinetic approach is applied to the study of plastic flow of plate specimens of two-dimensional polycrystals of high purity metals under uniaxial tension with a constant strain rate at moderate temperatures. A dislocation-kinetic equation is formulated. It takes into account the role of the free surface of a plate specimen, which is the source and sink of dislocations, and the strengthening effect of through grain boundaries in a twodimensional polycrystal. To calculate tensile stress-strain curves, the kinetic equation was transformed using the Taylor strain hardening law and an analytical solution was obtained for this equation. Using the example of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) it was shown that the calculation results are in good agreement with experimental data. Дислокаційно-кінетичний підхід застосовано до дослідження пластичної течії плоских зразків двовимірних полікристалів чистих металів в умовах одноосного розтягу з постійною швидкістю деформації при помірних температурах. Сформульовано дислокаційно-кінетичне рівняння, в якому враховані роль вільної поверхні плоского зразка, яка є джерелом і стоком дислокацій, і зміцнююча дія наскрізних меж зерен у двовимірному полікристалі. Для розрахунку кривої деформації кінетичне рівняння перетворено з використанням закону деформаційного зміцнення Тейлора і отримано аналітичне рішення цього рівняння. На прикладі плоских зразків двовимірних полікристалів чистого алюмінію (99,999 ат.%) показано, що результати розрахунків досить добре узгоджуються з експериментальними даними. Дислокационно-кинетический подход применен к исследованию пластического течения плоских образцов двумерных поликристаллов чистых металлов в условиях одноосного растяжения с постоянной скоростью деформации при умеренных температурах. Сформулировано дислокационно-кинетическое уравнение, в котором учтены роль свободной поверхности плоского образца, являющейся источником и стоком дислокаций, и упрочняющее действие сквозных границ зерен в двумерном поликристалле. Для расчета кривой деформации кинетическое уравнение преобразовано с использованием закона деформационного упрочнения Тейлора и получено аналитическое решение этого уравнения. На примере плоских образцов двумерных поликристаллов чистого алюминия (99,999 ат.%) показано, что результаты расчетов достаточно хорошо согласуются с экспериментальными данными. 2019 Article Dislocation kinetics during plastic deformation of two-dimensional polycrystals / E.E. Badiyan, A.G. Tonkopryad, Ye.V. Ftomov, O.V. Shekhovtsov // Problems of atomic science and technology. — 2019. — № 2. — С. 25-29. — Бібліогр.: 18 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/194932 539.4.01 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Physics of radiation damages and effects in solids
Physics of radiation damages and effects in solids
spellingShingle Physics of radiation damages and effects in solids
Physics of radiation damages and effects in solids
Badiyan, E.E.
Tonkopryad, A.G.
Ftomov, Ye.V.
Shekhovtsov, O.V.
Dislocation kinetics during plastic deformation of two-dimensional polycrystals
Вопросы атомной науки и техники
description The dislocation-kinetic approach is applied to the study of plastic flow of plate specimens of two-dimensional polycrystals of high purity metals under uniaxial tension with a constant strain rate at moderate temperatures. A dislocation-kinetic equation is formulated. It takes into account the role of the free surface of a plate specimen, which is the source and sink of dislocations, and the strengthening effect of through grain boundaries in a twodimensional polycrystal. To calculate tensile stress-strain curves, the kinetic equation was transformed using the Taylor strain hardening law and an analytical solution was obtained for this equation. Using the example of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) it was shown that the calculation results are in good agreement with experimental data.
format Article
author Badiyan, E.E.
Tonkopryad, A.G.
Ftomov, Ye.V.
Shekhovtsov, O.V.
author_facet Badiyan, E.E.
Tonkopryad, A.G.
Ftomov, Ye.V.
Shekhovtsov, O.V.
author_sort Badiyan, E.E.
title Dislocation kinetics during plastic deformation of two-dimensional polycrystals
title_short Dislocation kinetics during plastic deformation of two-dimensional polycrystals
title_full Dislocation kinetics during plastic deformation of two-dimensional polycrystals
title_fullStr Dislocation kinetics during plastic deformation of two-dimensional polycrystals
title_full_unstemmed Dislocation kinetics during plastic deformation of two-dimensional polycrystals
title_sort dislocation kinetics during plastic deformation of two-dimensional polycrystals
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Physics of radiation damages and effects in solids
url https://nasplib.isofts.kiev.ua/handle/123456789/194932
citation_txt Dislocation kinetics during plastic deformation of two-dimensional polycrystals / E.E. Badiyan, A.G. Tonkopryad, Ye.V. Ftomov, O.V. Shekhovtsov // Problems of atomic science and technology. — 2019. — № 2. — С. 25-29. — Бібліогр.: 18 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT badiyanee dislocationkineticsduringplasticdeformationoftwodimensionalpolycrystals
AT tonkopryadag dislocationkineticsduringplasticdeformationoftwodimensionalpolycrystals
AT ftomovyev dislocationkineticsduringplasticdeformationoftwodimensionalpolycrystals
AT shekhovtsovov dislocationkineticsduringplasticdeformationoftwodimensionalpolycrystals
AT badiyanee dislokacíjnakínetikapriplastičníjdeformacíídvovimírnihpolíkristalív
AT tonkopryadag dislokacíjnakínetikapriplastičníjdeformacíídvovimírnihpolíkristalív
AT ftomovyev dislokacíjnakínetikapriplastičníjdeformacíídvovimírnihpolíkristalív
AT shekhovtsovov dislokacíjnakínetikapriplastičníjdeformacíídvovimírnihpolíkristalív
AT badiyanee dislokacionnaâkinetikapriplastičeskojdeformaciidvumernyhpolikristallov
AT tonkopryadag dislokacionnaâkinetikapriplastičeskojdeformaciidvumernyhpolikristallov
AT ftomovyev dislokacionnaâkinetikapriplastičeskojdeformaciidvumernyhpolikristallov
AT shekhovtsovov dislokacionnaâkinetikapriplastičeskojdeformaciidvumernyhpolikristallov
first_indexed 2025-11-25T19:51:04Z
last_indexed 2025-11-25T19:51:04Z
_version_ 1849793201288773632
fulltext ISSN 1562-6016. PASТ. 2019. №2(120), p. 25-29. DISLOCATION KINETICS DURING PLASTIC DEFORMATION OF TWO-DIMENSIONAL POLYCRYSTALS E.E. Badiyan, A.G. Tonkopryad, Ye.V. Ftomov, O.V. Shekhovtsov V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: Evgeny.E.Badiyan@univer.kharkov.ua, Phone: +38(057)707-53-47 The dislocation-kinetic approach is applied to the study of plastic flow of plate specimens of two-dimensional polycrystals of high purity metals under uniaxial tension with a constant strain rate at moderate temperatures. A dislocation-kinetic equation is formulated. It takes into account the role of the free surface of a plate specimen, which is the source and sink of dislocations, and the strengthening effect of through grain boundaries in a two- dimensional polycrystal. To calculate tensile stress-strain curves, the kinetic equation was transformed using the Taylor strain hardening law and an analytical solution was obtained for this equation. Using the example of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) it was shown that the calculation results are in good agreement with experimental data. PACS: 61.72.Cc, 61.82.Bg, 62.20.Fe INTRODUCTION The widespread use of various polycrystalline solids as structural materials necessitates an understanding of the physical nature of their strength and ductility. It is known that grain boundaries are not only barriers to the movement of dislocations that control the mechanical properties of polycrystals, but also effective sources and sinks of dislocations and other radiation defects providing enhanced radiation resistance 1–3.Two- dimensional polycrystals are a successful model object for research. They contain only one layer of grains and have through “vertical” grain boundaries. All grains are “surface” in the sense that they have access to the free surface of the sample. In two-dimensional polycrystals, it is possible to determine the crystallographic orientation of all grains and the crystal-geometric parameters of their boundaries. Rotational 4, 5 and other effects 6, 7 associated with plastic deformation are specifically manifested due to the lack of tightness of the “surface” grains in the “vertical” direction, which is perpendicular to the tensile axis. At the same time, two-dimensional polycrystals are finding independent practical application as polycrystalline films, foils and plates, which are operated under the action of mechanical stresses. A dislocation-kinetic approach can be used to describe the plastic flow of a crystalline material. It is based on equations describing the evolution of the dislocation density in a material with increasing degree of plastic strain. This approach makes it possible to obtain the dependence of the flow stress on an average grain size, transverse sample size, temperature, degree and strain rate 8–14. 1. DISLOCATION-KINETIC EQUATION FOR PLATE SPECIMENS OF TWO-DIMENSIONAL POLYCRYSTALS This paper is devoted to the study of plastic deformation under conditions of uniaxial tension at moderate temperatures of plate specimens of two- dimensional polycrystals of high purity metals with a thickness from or more and with an average grain size from to macroscopic values (nano- and micro-sized specimens with nano- and microgranular structures were investigated in 12–14). Here, plate specimens are understood as specimens with a rectangular cross section whose sizes are related by the ratio , where D is the specimen thickness (size in the “vertical” direction), w and l are width and length of the working area, respectively (Fig. 1). In such specimens, the surface-to-volume ratio is . The kinetic equation describes the evolution of the average dislocation density in a material with increasing shear strain . It should contain the product and the terms describing the processes of accumulation of dislocations in the material and reduction of their density. We will write down the dislocation-kinetic equation for plate specimens of two- dimensional polycrystals using data from 8–14. In this case, the specificity of the studied specimens should be taken into account. It consists in the fact that in such objects a large role is played by the free surface of the specimen, which is the source and sink of dislocations. In addition, all grain boundaries are cross-cutting, which determines the characteristics of the strain hardening associated with them. Fig. 1. Scheme of a plate specimen of a two-dimensional polycrystal mailto:Evgeny.E.Badiyan@univer.kharkov.ua The accumulation of dislocations in a three- dimensional polycrystal, the thickness D of which greatly exceeds the average grain size d, due to the presence of grain boundaries is described by , where b is the Burgers vector,  is the coefficient determining the intensity of dislocation accumulation in grains because the grain size d limits the mean free path length of dislocations. The coefficient expresses the relative proportion of grains enclosed in the bulk of the specimen and not having access to the free surface of the specimen. However, in a two-dimensional polycrystal all the grains are “surface”, therefore . Here, the through “vertical” grain boundaries have a strengthening effect and we need to take it into account. According to 7, the “vertical” boundaries of the “surface” grains create obstacles for the movement of dislocations only in those areas of the grains that adjoin these boundaries. Thus, in the “surface” grain the volume of which is equal to , there is a part of it with volume , in which dislocations have difficulty for ove ent, eeting with “vertical” grain boundaries, whereas moving dislocations have no such obstacles in the rest of the grain volume . The relative part of the grain which is adjacent to the "vertical" boundaries determines the factor . Then, by analogy with the expression , we can write the expression which characterizes the strengthening effect of the “vertical” grain boundaries in a two-dimensional polycrystal. The mean free path length of dislocations in the “surface” grain before the eeting with the vertical boundary (Fig. 1) needs to be determined. If we assume that the “surface” grains have the shape of a square with a side on a free “horizontal” surface and the size in the transverse (“vertical”) direction then in the case of we are dealing with a grain structure that is “needle” if . For it, and where  is the angle between the slip plane and the tensile axis (the length l of the working area of the specimen is measured along this axis). Therefore, in this case . For the grain structure with the parameters , which is “pancake” for , we get tg and sin , but the relation remains unchanged. Thus, in a dislocation-kinetic equation, grain-boundary hardening in a two-dimensional polycrystal is described by the term . In addition to the grain-boundary hardening considered above, contributions to the accumulation of dislocations are also provided by the operation of surface dislocation sources with density and the dislocation generation by double cross-slip of screw dislocations on forest dislocations. In the kinetic equation, they are described by the terms and , respectively. Here, the coefficient describes the intensity of dislocation multiplication on forest dislocations ( ). It should be noted that the mechanism of dislocation generation on forest dislocations is characteristic of so-called ordinary polycrystalline metals with grain sizes from and more, but it does not work in nanocrystalline materials 12, 14. For specimens with a rectangular cross section, the surface-to-volume ratio is determined by the expression , which for plate specimens ( ) takes the form 13. The loss of dislocations from the process of generation due to their exit from the specimen onto its surface leads to a decrease in the average density . In the kinetic equation, such a process takes into account the term . In addition, the dislocation density in the material decreases due to the annihilation of the screw sections of the dislocation loops, which takes into account the term , where is the coefficient of annihilation of screw dislocation. As a result, for plate specimens of two-dimensional polycrystals of high purity metals with a thickness from or more and with an average grain size from to macroscopic values under uniaxial tension with a constant strain rate ̇ at moderate temperatures (in the absence of diffusion mechanisms of dislocation annihilation) the dislocation-kinetic equation can be written as ( ) ( ) ( ) ( ) (1) 2. PLASTIC FLOW OF PLATE SPECIMENS OF TWO-DIMENSIONAL POLYCRYSTALS The dependence of the stress on the degree of plastic strain characterizes the plastic flow of a material. To obtain stress-strain curves in the case of uniaxial tensile of plate specimens of two- dimensional polycrystals, we transform the kinetic equation (1) in the same way as was done in 8, 10, 14 using the expressions , , where m is the orientation factor, is the flow stress which is determined by the interaction of dislocations with each other in accordance with the Taylor equation 15 , (2) in which is the constant of interaction of dislocations with each other, is the shear modulus. Having executed transformations, we receive , (3) where , , . Integrating (3), we obtain the dependence of the deforming stress on the degree of plastic strain in the implicit form: ln| | ln| | )ln| | √ arctg √ . (4) The integration constant C is determined from the condition . The parameters in (4) are: (√ √( √ ) ( √ )), where ( √ ) ( √ ) , , . The quantities , , , are defined as the solution of the system of equations , , , , wherein √ , √ . Further, as an example, the stress-strain curves are presented in the case of uniaxial tensile of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%). The tensile stress-strain curves are shown by the lines in Fig. 2. They were calculated on the basis of (4) and “stitched” to the linear section corresponding to the elastic strain at stress and strain values of 0.07 MPa and , respectively, according to 16. The values of the parameters used in the calculation of these tensile stress-strain curves by the formula (4) were selected in accordance with the data of 7, 12, 13, 17 and are presented in Table. Experimental data are taken from 7 and are presented in Fig. 2 by dots. a b Fig. 2. The tensile stress-strain curves for plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) a) with the thickness and a various average grain size : 1  , 2  ,, 3  , 4  ; b – with the average grain size and a various thickness : 5  , 6  , 7  , 8  . Parameters of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) used in the calculations of the tensile stress-strain curves in Fig. 2 in accordance with the data of 7, 12, 13, 17 Curve number , GPa b, nm  ka 1 95 4 120 2.60 27 0.286 0.32 9.7 1.00 2 95 4 183 2.65 27 0.286 0.32 9.7 0.85 3 97 4 205 2.52 27 0.286 0.32 9.7 1.50 4 95 4 1000 2.60 27 0.286 0.32 9.7 1.00 5 50 4 379 2.69 27 0.286 0.32 9.7 1.00 6 100 4 379 2.69 27 0.286 0.32 9.7 1.00 7 266 4 379 2.69 27 0.286 0.32 9.7 1.00 8 700 4 379 2.69 27 0.286 0.32 9.7 1.00 The strain hardening of plate specimens of two- dimensional polycrystals depends according to (1) and (4) both on the average grain size and on the thickness D. The tensile stress-strain curves in Fig. 2 clearly show it. It should also be noted that these curves are limited by the degree of strain of %. For large plastic strain, it is necessary to take into account the features of the formation of cellular and fragmented dislocation structures and their contribution to strain hardening. CONCLUSIONS In the framework of the dislocation-kinetic approach, the plastic flow of plate specimens of two- dimensional polycrystals of high purity metals to the stage of developed plastic strain has been investigated. Based on the data available in the literature, a kinetic equation has been formulated that describes the evolution of the dislocation density with increasing degree of strain of a plate specimen of two-dimensional polycrystal with a thickness and an average grain size from to macroscopic values under uniaxial tension with a constant strain rate at moderate temperatures. To calculate a tensile stress-strain curve, the kinetic equation was transformed using the Taylor strain hardening law and an analytical solution of this equation was obtained. As an example, the tensile stress-strain curves for plate specimens of two- dimensional polycrystals of high purity aluminium (99.999 at.%) are presented. They are in fairly good agreement with experimental data. The proposed model allows one to quantitatively describe the strain hardening of plate specimens of two-dimensional polycrystals depending on the average grain size and thickness of the deformable specimens. REFERENCES 1. V.N. Voyevodin, V.V. Bryk, A.S. Kalchenko, I.M. Neklyudov. Simulation technologies in modern radiation material science // Problems of Atomic Science and Technology. Series “Radiation Damage Physics and Radiation Materials Science”. 2014, N 4(92), p. 3- 22. 2. A. Chauhan, D. Litvinov, J. Aktaa. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel // Journal of Nuclear Materials. 2016, v. 468, p. 1-8. 3. G.A. Vetterick, J. Gruber, P.K. Suri, J.K. Baldwin, M.A. Kirk, P. Baldo, Y.Q. Wang, A. Misra, G.J. Tucker, M.L. Taheri. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures // Scientific reports. 2017, v. 7(1), p. 12275. 4. Е.Е. Бадиян, А.Г. Тонкопряд, О.В. Шеховцов, Т.Р. Зетова, Р.В. Шуринов, С.В. Талах, А.В. Дергачова. Особенности структуры двумерных поликристаллов меди, полученных методом рекристаллизации, и характер ее изменения в процессе пластического деформирования // Вопросы атомной науки и техники. Серия «Вакуум, чистые материалы, сверхпроводники». 2016, №1(1 1), с. 88- 91. 5. E.E. Badiyan, A.G. Tonkopryad, O.V. Shekhov- tsov, R.V. Shurinov. Effects of temperature on the laws of plastic deformation and mechanical characteristics foils Al coated with titanium nitride // Вопросы атомной науки и техники. Серия «Физика радиационных технологий и радиационное материаловедение». 16, №2(1 ), с. 9 -98. 6. S. Miyazaki, K. Shibata, H. Fujita. Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes // Acta Metall. 1979, v. 27, p. 855-862. 7. P.J. Janssen, T.H. de Keijser, M.G. Geers. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness // Mater. Sci. Eng. 2006, v. A 419, p. 238-248. 8. U.F. Kocks, H. Mecking. Physics and phenomenology of strain hardening: the FCC case // Progr. Mater. Sci. 2003, v. 48, p. 171-273. 9. О.А. Кайбышев, Р.З. Валиев. Границы зерен и свойства металлов. М.: «Металлургия», 1987, 214 с. 10. Г.А. Малыгин. Уравнение эволюции плотности дислокаций и первая стадия деформационного упрочнения кристаллов ФТТ. 1993, т. 35, №5, с. 13 8-1342. 11. Г.А. Малыгин. Деформационное упрочне- ние кристаллов. Размерный, ориентационный и поверхностный эффекты ФТТ. 1993, т. 35, №6, с. 1698-1709. 12. Г.А. Малыгин. Пластичность и прочность микро- и нанокристаллических материалов ФТТ. 2007, т. 49, №6, с. 961-982. 13. Г.А. Малыгин. Размерные эффекты при пластической деформации микро- и нанокристаллов // ФТТ. 2010, т. 5 , №1, с. 48-55. 14. Г.А. Малыгин. Влияние поперечного размера образцов с микро- и нанозеренной структурой на предел текучести и напряжение течения // ФТТ. 2012, т. 54, №3, с. 5 3-530. 15. G.I. Taylor. The mechanism of plastic deformation of crystals. Part I. Theoretical // Proc. Roy. Soc. A. 1934, v. 145, N 855, p. 362-387. 16. I.C. Noyan, J.B. Cohen. Residual stress: measurement by diffraction and interpretation. New York: “Springer-Verlag”, 1987, р. 44-45. 17. Г.А. Малыгин. Аннигиляция винтовых дислокаций поперечным скольжением как механизм динамического отдыха ФТТ. 1992, т. 34, №9, с. 2882-2892I.C. Noyan, J.B. Cohen. Residual stress: measurement by diffraction and interpretation. New York: «Springer-Verlag», 1987, P. 44-45. 18. Г.А. Малыгин. Аннигиляция винтовых дислокаций поперечным скольжением как механизм динамического отдыха ФТТ. 199 , Т. 34, №9, с. 2882-2892. Article received 11.02.2019 ДИСЛОКАЦИОННАЯ КИНЕТИКА ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ДВУМЕРНЫХ ПОЛИКРИСТАЛЛОВ Е.Е. Бадиян, А.Г. Тонкопряд, Е.В. Фтемов, О.В. Шеховцов Дислокационно-кинетический подход применен к исследованию пластического течения плоских образцов двумерных поликристаллов чистых металлов в условиях одноосного растяжения с постоянной скоростью деформации при умеренных температурах. Сформулировано дислокационно-кинетическое уравнение, в котором учтены роль свободной поверхности плоского образца, являющейся источником и стоком дислокаций, и упрочняющее действие сквозных границ зерен в двумерном поликристалле. Для расчета кривой деформации кинетическое уравнение преобразовано с использованием закона деформационного упрочнения Тейлора и получено аналитическое решение этого уравнения. На примере плоских образцов двумерных поликристаллов чистого алюминия (99,999 ат.%) показано, что результаты расчетов достаточно хорошо согласуются с экспериментальными данными. ДИСЛОКАЦІЙНА КІНЕТИКА ПРИ ПЛАСТИЧНІЙ ДЕФОРМАЦІЇ ДВОВИМІРНИХ ПОЛІКРИСТАЛІВ Є.Ю. Бадіян, А.Г. Тонкопряд, Є.В. Фтьомов, О.В. Шеховцов Дислокаційно-кінетичний підхід застосовано до дослідження пластичної течії плоских зразків двовимірних полікристалів чистих металів в умовах одноосного розтягу з постійною швидкістю деформації при помірних температурах. Сформульовано дислокаційно-кінетичне рівняння, в якому враховані роль вільної поверхні плоского зразка, яка є джерелом і стоком дислокацій, і зміцнююча дія наскрізних меж зерен у двовимірному полікристалі. Для розрахунку кривої деформації кінетичне рівняння перетворено з використанням закону деформаційного зміцнення Тейлора і отримано аналітичне рішення цього рівняння. На прикладі плоских зразків двовимірних полікристалів чистого алюмінію (99,999 ат.%) показано, що результати розрахунків досить добре узгоджуються з експериментальними даними.