Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry

The paper presents an overview of the research into the available non-destructive methods of determining the ²³⁴U isotope content in uranium-bearing materials. An alternative approach to a problem of detector calibration by the characteristic “intrinsic” efficiency is proposed. Certified reference u...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2021
Автори: Kutniy, D.V., Burdeinyi, D.D., Savchenko, N.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195113
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry / D.V. Kutniy, D.D. Burdeinyi, N.N. Savchenko // Problems of Atomic Science and Technology. — 2021. — № 3. — С. 81-85. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195113
record_format dspace
spelling Kutniy, D.V.
Burdeinyi, D.D.
Savchenko, N.N.
2023-12-03T13:33:50Z
2023-12-03T13:33:50Z
2021
Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry / D.V. Kutniy, D.D. Burdeinyi, N.N. Savchenko // Problems of Atomic Science and Technology. — 2021. — № 3. — С. 81-85. — Бібліогр.: 16 назв. — англ.
1562-6016
PACS: 29.30Kv
DOI: https://doi.org/10.46813/2023-133-081
https://nasplib.isofts.kiev.ua/handle/123456789/195113
The paper presents an overview of the research into the available non-destructive methods of determining the ²³⁴U isotope content in uranium-bearing materials. An alternative approach to a problem of detector calibration by the characteristic “intrinsic” efficiency is proposed. Certified reference uranium-bearing materials CRM 969 and CRM 146 (a range of ²³⁵U enrichments studied was 0.3…93%) were used as test samples, measurements were carried out with a wide-range energy detector based on the high-purity BeGe 3830 germanium (Canberra, USA) with 38 cm2 area and 3 cm thickness. An approach used for the “intrinsic” efficiency calibration for the ²³⁴U analysis permits to decrease the measurement error to 7.5% in the whole range of ²³⁵U enrichment (from 0.3 to 93%) and ²³⁴U concentrations (20 to 9800 μg/g). The proposed method does not demand standard samples for equipment calibration and does not depend on the physical (chemical) form of the investigated material and measurement geometry.
Проаналізовано існуючі методи неруйнівного визначення кількісного вмісту ізотопу ²³⁴U в уранвміщуючих матеріалах, а також запропоновано альтернативний метод, заснований на підході калібрування детектора за «характерною» ефективністю. В якості досліджуваних зразків використовували сертифіковані стандартні зразки уранвміщуючих матеріалів CRM 969 і CRM 146 (інтервал збагачень по ²³⁵U (0,3…93%), вимірювання проводили за допомогою широкодіапазонного детектора на основі германію високої чистоти типу BeGe 3830 (Canberra, США) площею 38 см2 і товщиною 3 см. Використання підходу калібрування детектора за «характерною» ефективністю для аналізу ²³⁴U призводить до зниження похибки вимірювань до 7,5% у всьому діапазоні збагачень по ²³⁵U (0,3…93%) і концентрацій ²³⁴U (20…9800 μг/г). Запропонований метод не вимагає наявності стандартних зразків для калібрування обладнання, не залежить від фізичної (хімічної) форми досліджуваних матеріалів і геометрії вимірювань.
Проанализированы существующие методы неразрушающего определения количественного содержания изотопа ²³⁴U в урансодержащих материалах, а также предложен альтернативный метод, основанный на подходе калибровки детектора по «характерной» эффективности. В качестве исследуемых образцов использовали сертифицированные стандартные образцы урансодержащих материалов CRM 969 и CRM 146 (интервал исследуемых обогащений по ²³⁵U (0,3…93%), измерения проводили с помощью широкодиапазонного детектора на основе германия высокой чистоты типа BeGe 3830 (Canberra, США) площадью 38 см2 и толщиной 3 см. Использование подхода калибровки детектора по «характерной» эффективности для анализа ²³⁴U приводит к снижению погрешности измерений до 7,5% во всем диапазоне обогащений по ²³⁵U (0,3…93%) и исследуемых концентраций ²³⁴U (20…9800 μг/г). Предлагаемый метод не требует наличия стандартных образцов для калибровки оборудования, не зависит от физической (химической) формы исследуемых материалов и геометрии измерений.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Experimental methods and processing of data
Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
Визначення вмісту ізотопу ²³⁴U в уранвміщуючих матеріалах методом гамма-спектрометрії високого розподілення
Определение содержания изотопа ²³⁴U в урансодержащих материалах методом гамма-спектрометрии высокого разрешения
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
spellingShingle Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
Kutniy, D.V.
Burdeinyi, D.D.
Savchenko, N.N.
Experimental methods and processing of data
title_short Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
title_full Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
title_fullStr Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
title_full_unstemmed Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry
title_sort determination of the ²³⁴u isotope content in uranium-bearing materials using high-resolution gamma spectrometry
author Kutniy, D.V.
Burdeinyi, D.D.
Savchenko, N.N.
author_facet Kutniy, D.V.
Burdeinyi, D.D.
Savchenko, N.N.
topic Experimental methods and processing of data
topic_facet Experimental methods and processing of data
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Визначення вмісту ізотопу ²³⁴U в уранвміщуючих матеріалах методом гамма-спектрометрії високого розподілення
Определение содержания изотопа ²³⁴U в урансодержащих материалах методом гамма-спектрометрии высокого разрешения
description The paper presents an overview of the research into the available non-destructive methods of determining the ²³⁴U isotope content in uranium-bearing materials. An alternative approach to a problem of detector calibration by the characteristic “intrinsic” efficiency is proposed. Certified reference uranium-bearing materials CRM 969 and CRM 146 (a range of ²³⁵U enrichments studied was 0.3…93%) were used as test samples, measurements were carried out with a wide-range energy detector based on the high-purity BeGe 3830 germanium (Canberra, USA) with 38 cm2 area and 3 cm thickness. An approach used for the “intrinsic” efficiency calibration for the ²³⁴U analysis permits to decrease the measurement error to 7.5% in the whole range of ²³⁵U enrichment (from 0.3 to 93%) and ²³⁴U concentrations (20 to 9800 μg/g). The proposed method does not demand standard samples for equipment calibration and does not depend on the physical (chemical) form of the investigated material and measurement geometry. Проаналізовано існуючі методи неруйнівного визначення кількісного вмісту ізотопу ²³⁴U в уранвміщуючих матеріалах, а також запропоновано альтернативний метод, заснований на підході калібрування детектора за «характерною» ефективністю. В якості досліджуваних зразків використовували сертифіковані стандартні зразки уранвміщуючих матеріалів CRM 969 і CRM 146 (інтервал збагачень по ²³⁵U (0,3…93%), вимірювання проводили за допомогою широкодіапазонного детектора на основі германію високої чистоти типу BeGe 3830 (Canberra, США) площею 38 см2 і товщиною 3 см. Використання підходу калібрування детектора за «характерною» ефективністю для аналізу ²³⁴U призводить до зниження похибки вимірювань до 7,5% у всьому діапазоні збагачень по ²³⁵U (0,3…93%) і концентрацій ²³⁴U (20…9800 μг/г). Запропонований метод не вимагає наявності стандартних зразків для калібрування обладнання, не залежить від фізичної (хімічної) форми досліджуваних матеріалів і геометрії вимірювань. Проанализированы существующие методы неразрушающего определения количественного содержания изотопа ²³⁴U в урансодержащих материалах, а также предложен альтернативный метод, основанный на подходе калибровки детектора по «характерной» эффективности. В качестве исследуемых образцов использовали сертифицированные стандартные образцы урансодержащих материалов CRM 969 и CRM 146 (интервал исследуемых обогащений по ²³⁵U (0,3…93%), измерения проводили с помощью широкодиапазонного детектора на основе германия высокой чистоты типа BeGe 3830 (Canberra, США) площадью 38 см2 и толщиной 3 см. Использование подхода калибровки детектора по «характерной» эффективности для анализа ²³⁴U приводит к снижению погрешности измерений до 7,5% во всем диапазоне обогащений по ²³⁵U (0,3…93%) и исследуемых концентраций ²³⁴U (20…9800 μг/г). Предлагаемый метод не требует наличия стандартных образцов для калибровки оборудования, не зависит от физической (химической) формы исследуемых материалов и геометрии измерений.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195113
citation_txt Determination of the ²³⁴U isotope content in uranium-bearing materials using high-resolution gamma spectrometry / D.V. Kutniy, D.D. Burdeinyi, N.N. Savchenko // Problems of Atomic Science and Technology. — 2021. — № 3. — С. 81-85. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT kutniydv determinationofthe234uisotopecontentinuraniumbearingmaterialsusinghighresolutiongammaspectrometry
AT burdeinyidd determinationofthe234uisotopecontentinuraniumbearingmaterialsusinghighresolutiongammaspectrometry
AT savchenkonn determinationofthe234uisotopecontentinuraniumbearingmaterialsusinghighresolutiongammaspectrometry
AT kutniydv viznačennâvmístuízotopu234uvuranvmíŝuûčihmateríalahmetodomgammaspektrometríívisokogorozpodílennâ
AT burdeinyidd viznačennâvmístuízotopu234uvuranvmíŝuûčihmateríalahmetodomgammaspektrometríívisokogorozpodílennâ
AT savchenkonn viznačennâvmístuízotopu234uvuranvmíŝuûčihmateríalahmetodomgammaspektrometríívisokogorozpodílennâ
AT kutniydv opredeleniesoderžaniâizotopa234uvuransoderžaŝihmaterialahmetodomgammaspektrometriivysokogorazrešeniâ
AT burdeinyidd opredeleniesoderžaniâizotopa234uvuransoderžaŝihmaterialahmetodomgammaspektrometriivysokogorazrešeniâ
AT savchenkonn opredeleniesoderžaniâizotopa234uvuransoderžaŝihmaterialahmetodomgammaspektrometriivysokogorazrešeniâ
first_indexed 2025-11-25T13:26:51Z
last_indexed 2025-11-25T13:26:51Z
_version_ 1850515574580314112
fulltext ISSN 1562-6016. ВАНТ. 2021. № 3(133) 81 https://doi.org/10.46813/2023-133-081 DETERMINATION OF THE 234U ISOTOPE CONTENT IN URANIUM-BEARING MATERIALS USING HIGH-RESOLUTION GAMMA SPECTROMETRY D.V. Kutniy1, D.D. Burdeinyi1, N.N. Savchenko2 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: d_kutniy@kipt.kharkov.ua The paper presents an overview of the research into the available non-destructive methods of determining the 234U isotope content in uranium-bearing materials. An alternative approach to a problem of detector calibration by the characteristic “intrinsic” efficiency is proposed. Certified reference uranium-bearing materials CRM 969 and CRM 146 (a range of 235U enrichments studied was 0.3…93%) were used as test samples, measurements were car- ried out with a wide-range energy detector based on the high-purity BeGe 3830 germanium (Canberra, USA) with 38 cm2 area and 3 cm thickness. An approach used for the “intrinsic” efficiency calibration for the 234U analysis permits to decrease the measurement error to 7.5% in the whole range of 235U enrichment (from 0.3 to 93%) and 234U concentrations (20 to 9800 g/g). The proposed method does not demand standard samples for equipment cali- bration and does not depend on the physical (chemical) form of the investigated material and measurement geometry. PACS: 29.30Kv INTRODUCTION Natural uranium is a mixture of three isotopes: 238U (the content in natural mixture 99.280 wt. %), 235U (0.714 wt. %), and 234U (0.006 wt. %) [1]. A 234U iso- tope is radiogenic, not a primary one, it is a part of the radioactive series of 238U. Despite an utterly low content of 234U, its activity in natural uranium is almost equal to the 238U activity, as these isotopes are in balance. Thus, 234U and 238U contribute each more than 49% to the total activity of natural uranium. When making fuel for nuclear plants, natural ura- nium is enriched in order to increase the 235U isotope content. At the same time, the content of 234U isotope, as even lighter, also increases. Although in the nuclear fuel the content of 234U remains at the level of hundredths of a percent its activity becomes predominant. That is why, from a sanitary point of view, 234U carries the greatest radiological hazard to the staff health that indicates an urgency of determining even its small contents. Furthermore, in conformity with the nuclear fuel cy- cle (NFC) processes, the 234U content limit in the raw material of natural and enriched uranium hexafluoride (UF6) is regulated by ASTM C 787 and ASTM C 996 standards at 60 and 11 g/g of U, respectively. Conse- quently, the quantitative identification of 234U is urgent both for the radiation safety and for the implementation of analytical quality control of NFC products. Currently the destructive methods of analysis (in- ductively coupled plasma mass spectrometry, alpha spectrometry) of the isotopic composition of uranium- bearing materials are well developed [2 - 5]. One of the disadvantages of destructive methods is complex and time-consuming sample preparation: for example, for alpha spectrometry it is necessary to separate com- pletely the analyte from the matrix and to transfer the sample into the thin-disk mold using electrodeposition, evaporation, co-precipitation [6]. Therefore, the non- destructive methods with a simplified sample prepara- tion are quickly developing. In addition, the use of such methods decreases the time of direct contact with the sample that is especially important when working with radioactive materials and does not lead to the formation of radioactive waste, which subsequently should be dis- posed. Gamma-ray spectrometry, as a non-destructive method of analysis of the isotopic composition of ura- nium-bearing materials, began to be used in the 1970s [7, 8]. To date, available are the Canberra's commercial software for uranium isotope analysis: MGAU (Multi- Group Analysis for Uranium) and FRAM (Fixed-energy Response-function Analysis with Multiple Efficiency) developed in U.S. national laboratories (LLNL, LANL) [9, 10]. As a result of processing the gamma spectrometric data the software calculates the content of isotopes 238U, 235U, 234U (and in some cases 236U). As these software codes were developed primarily to determine the en- richment of uranium-bearing materials, the metrological characteristics of 235U, 238U measurements were thor- oughly investigated and determined [11 - 13], in con- trast with the 234U isotope. The paper [14] shows that the error of determining the 234U content using MGAU code can range from 20 to 50%. So, the purpose of this study was to analyze the available non-destructive methods and to develop an alternative approach for de- termining the isotope 234U content in uranium-bearing materials as well as to substantiate the choice of the best method for providing the radiation safety and analytical quality control of NFC products. EXPERIMENTAL TECHNIQUE Investigations were carried out using certified refer- ence uranium-bearing materials (CRM 969: level of enrichment from 0.3 to 4 wt. % and CRM 146: level of enrichment from 20 to 93 wt. %) manufactured by the New Brunswick Laboratory of USA. The characteristics of the samples are given in Table 1. ISSN 1562-6016. ВАНТ. 2021. № 3(133) 82 Table 1 Interferences of the main analytic lines of K and L series elements with uranium lines of L and M series Sample ID 235U, wt.% 238U, wt.% 234U, wt.% 031 0.3166 ±0.0002 99.6668 ±0.0004 0.002 ±0.0002 071 0.7119 ±0.0005 99.2828 ±0.0004 0.0052 ±0.0002 194 1.9420 ±0.0014 98.0404 ±0.0018 0.0171 ±0.0002 295 2.9492 ±0.0021 97.0196 ±0.0029 0.0279 ±0.0004 446 4.4623 ±0.0032 95.4950 ±0.0032 0.0359 ±0.0003 NBL0013 20.1070 ±0.0200 79.5470 ±0.0200 0.1486 ±0.0004 NBL0014 52.4880 ±0.0420 46.8760 ±0.0430 0.3718 ±0.0010 NBL0015 93.1703 ±0.0052 5.5559 ±0.0053 0.9800 ±0.0029 The gamma-ray spectra of the samples investigated were acquired using a broad-energy detector based on the high-purity germanium of BeGe 3830 type (Can- berra, USA) with a 38 cm2 area and 3 cm thickness hav- ing the energy resolution of 0.468 at 5.9 keV; 0.572 at 122 keV, and 1.51 at 1.332 keV. Experimental spectrometric data were processed us- ing the commercial program packages MGAU and FRAM. Besides, the 234U isotope content evaluation was performed using an empirical equation from [15], 234 235 2 235( ) 0.0015 0.0058 ( ) 0.000054 ( )C U C U C U     , where 234( )C U is the 234U content; 235( )C U is the 235U content (enrichment). An alternative approach for the 234U content deter- mination was based on the approach of “intrinsic” effi- ciency calibration proposed in the studies of the age- dating of uranium-bearing materials [16]. The efficiency calibration is “intrinsic” in the sense that it relates to a specific gamma spectrum, i.e. for each sample under study (a set of spectral data) it is necessary to perform its own “intrinsic” calibration. A desired content can be derived from the activity ratio of isotopes 234U and 235U. The isotope activity in the sample is written as absA P I  , where P is the detector counting rate at the selected peak of photoelectric absorption; abs is the detector absolute efficiency and I is the emission inten- sity of gamma-ray of a given energy. The main problem in determining the absolute values of the isotope activity is to find abs which depends on many factors (gamma- ray energy, detector and sample characteristics, dis- tance, absorbers, etc.). This problem can be avoided with the use of isotope activity ratio. In the region of gamma-ray energies from 120 to 210 keV (Fig. 1) there are lines of 234U isotope (120.90 keV, I = 0.0342%) and of 235U isotope (143.76 keV, I = 10.96%; 163.33 keV, I = 5.08%; 185.72 keV, I = 57.20%, and 205.31 keV, I = 5.01%). By rewriting the activity equation as absA P I  , plotting the ratio P I versus 235U gamma-ray energy (E) and extrapolating the resulting dependence by the linear or quadratic function into the 120 keV energy range, we obtain the value of 235 235 120.90 120.90 U UP I  equal to the detection “intrinsic” effi- ciency of the conventional 235U gamma-quanta with 120.90 keV energy at a fixed activity value ( 235 120.90U absA   ). Fig. 1. Gamma-spectrum of the certified reference uranium-bearing material ID No 194 in the energy range from 120 to 210 keV Then the activity ratio 234U/235U can be written as: 234 120.90 234 234 120.90 120.90 235 120.90 235 235 120.90 120.90 U U U abs U U U abs A P I A P I            . By canceling the values of absolute efficiency 120.90 abs finally we get: 234 234234 120.90 120.90 235 235 235 120.90 120.90 U UU U U U P IA A P I       . Having the resulting ratio of the 234U and 235U iso- tope activities and determining the content of 235U in the sample by the software codes MGAU or FRAM, and taking into account the values of their specific activities 2.30108 and 7.98104 Bk/g it is possible to calculate the 234U isotope content. The proposed method elimi- nates the need of standard samples for an equipment calibration, does not depend on the physical (chemical) form of materials under study and geometry of meas- urements. RESULTS AND DISCUSSION Fig. 2 shows the uranium isotope activity contribu- tions into the total activity of the certified reference samples with various enrichments (uranium mass ~ 169 g in the samples CRM 969 and ~ 194 g in the samples CRM 146). It is seen that, indeed, starting with the contents of 235U more than 0.7 wt. %, the 234U iso- tope activity becomes predominant and reaches ~ 90% of the total activity for highly enriched uranium. Table 2 gives the results of determining the 234U iso- tope content using the software codes MGAU and FRAM, as well as the empirical equation described above. In the Table, besides the 234U content values, the standard deviations and relative measurement errors ( and ) are given. The research results show that the ISSN 1562-6016. ВАНТ. 2021. № 3(133) 83 available methods of 234U analysis are, most likely quantitative, especially for the samples with natural (0.7 wt. %) and depleted (0.3 wt. %) 235U contents. Fig. 2. Contribution of uranium isotope activities into the total activity of uranium-bearing materials versus their enrichment: 1 – activity of 235U; 2 – activity of 234U; 3 – activity of 238U The results of the MGAU code application leads to the underestimation of the 234U content in the entire range of material enrichments, while the error by for- mula [15] is of a diverse character. There is observed a tendency to the measurement error decrease with en- richment increasing, so the FRAM code application for analysis of low-enriched samples allows determining the 234U content with an error margin less than  10%. Standard deviations () of measurement results, de- pending mainly on the 120.90 keV line statistic and spectral data processing algorithm, are maximum for ID samples No 031 and No 071 (50 and 67% for MGAU code and 64 and 26% for FRAM code), and they mono- tonically decrease to 20 and 3%, respectively, with en- richment increasing. To develop an alternative method for determination of the 234U content based on the “intrinsic” efficiency calibration, the P/I ratios were plotted, as a function of 235U gamma-ray energy (143.76; 163.33; 185.72, and 205.31 keV), and then approximated by a quadratic or linear function (Fig. 3). Thus, the coefficients A1, B1, B2, the correlation coefficients R2 and the mean-square deviation (standard uncertainty) were found. The selec- tion of the approximation function was based on an evaluation of the correlation coefficient and mean- square deviation (MSD), the maximum value of the latter did not exceed 0.9%. Table 2 Results of determining the 234U isotope content using the software codes MGAU and FRAM, as well as the empirical formula [15] MGAU FRAM By equation [15] Sample ID 234( )C U  , wt. % , % 234( )C U  , wt. % , % 234( )C U  , wt. % , % 031 0.00400.0020 +100.00 0.00280.0018 +40.00 0.0033 +67.10 071 0.00300. 0020 -42.31 0.00700.0018 +34.62 0.0057 +8.77 194 0.01100.0030 -35.67 0.01690.0018 -1.17 0.0129 -24.17 295 0.02000.0040 -28.32 0.02540.0019 -8.96 0.0191 -31.63 446 0.02500.0050 -30.36 0,03770.0021 +5.01 0.0285 -20.73 NBL0013 0.11400.0230 -23,29 0.14740.0090 -0,81 0.1399 -5.83 NBL0014 0.27300.0550 -26.57 0.23660.0067 -36.36 0.4547 +22.30 NBL0015 0.72700.1460 -25.82 0.89300.0254 -8.88 1.0106 +3.13 a b Fig. 3. Results of the approximation of the P/I ratio versus 235U gamma-ray energy and its extrapolation into the 120 keV energy range: a – sample ID No 031; b – sample ID No NBL0015 The resulting functions were used to find the ratio 235 235 120.90 120.90 U UP I  and further, determining 234 234 120.90 120.90 U UP I  by processing the 120.90 keV peak from the obtained spectral data, the ratio of activities 234 235U UA A  was ISSN 1562-6016. ВАНТ. 2021. № 3(133) 84 calculated and, as a consequence, the 234U isotope con- tent was determined. The calculation results are given in Table 3. The maximum standard deviation values () are 28 and 5% for depleted and natural uranium. This is ex- plained by the low 234U peak statistic (120.90 keV) in these samples (0.000136 and 0.0082 counts/s) and, as a consequence, by a significant uncertainty in the analysis of its area. For all other enriched samples, the standard deviation value ranges from 1.0 to 2.5%. The measure- ment error monotonically decreases with enrichment increasing that is also explained by the increase of the 234U, 235U peak intensities and by the volume of their statistics. Table 3 Results of the 234U isotope content determination using the method of “intrinsic” efficiency calibration Sample ID Certified 234( )C U , wt. % Measured 234( )C U , wt. % , % , % 031 0.0020 0.001854 ±0.000527 28.41 -7.30 071 0.0052 0.005574 ±0.000280 5.02 +7.20 194 0.0171 0.018327 ±0.000394 2.15 +7.18 295 0.0279 0.029392 ±0.000355 1.21 +5.35 446 0.0359 0.037466 ±0.000480 1.28 +4.36 NBL0013 0.1486 0.154782 ±0.002870 1.85 +4.15 NBL0014 0.3718 0.382856 ±0.009655 2.52 +2.97 NBL0015 0.9800 1.007102 ±0.025198 2.50 +2.77 The relative measurement error () behaves simi- larly to the standard deviation for the same reasons. An insignificant systematic overestimation of the 234U con- tent value is associated with the error of experimental data approximation by a quadratic function, and proba- bly this problem can be solved by selection of an alter- native function. To apply the “intrinsic” efficiency method for detec- tor calibration, in order to determine the ratio of iso- topes activities, the presence of their sufficiently intense lines with close energies in the spectrum is required. For 234U and 235U isotopes this condition is optimally satis- fied, mechanisms and effects of the interaction between gamma-ray and materials of the sample, detector and container are identical for the specified geometry of measurements in a narrow range of energies. Conse- quently, the isotope activity ratio under consideration can be reliably derived by approximation of the normal- ized counting rates in the photoelectric absorption peaks of 235U followed by extrapolation of this dependence into the energy range of 234U gamma-ray. The lower detection limit of values 234( )C U  0.0020 wt. % (20 µg/g) is consistent, by the value order, with the maximum allowable contents of 234U in the raw material of natural and enriched UF6 that indicates the possibility of applying the proposed method for the ana- lytical quality control of NFC products. It should be noted that the approaches described in this paper sug- gest a uniform distribution of uranium isotopes in the matrix and the absence of a significant gamma-ray ab- sorption. For example, the characterization of radioac- tive waste may require further research to set the sensi- tivity limits of the proposed method. CONCLUSIONS The available methods of non-destructive determina- tion of 234U isotope content in uranium-bearing materi- als have been analyzed, and an alternative approach of “intrinsic” efficiency calibration of the detector is pro- posed. It is shown that the use of up-to-day commercial software products for isotopic uranium analysis does not allow to reliably evaluate the content of 234U isotope in depleted and natural samples due to a significant meas- urement error (from 35 to 100%). In the case of en- riched uranium analysis, the MGAU software code sys- tematically underestimates the 234U content by 20…30%, and the FRAM code can be used in the range of 235U enrichments from 2 to 20%. Features of the interaction between the gamma-ray and materials of the sample and detector in the energy range of the most intense lines of 234U and 235U (120…210 keV) provide an opportunity to implement the approach of “intrinsic” efficiency calibration for 234U content analysis. As a result, the error of the 234U content analysis did not exceed 7.5% in the entire range of 235U (0.3…93%) enrichment and 234U concentrations (20…9800 µg/g). REFERENCES 1. A.A. Maslov, G.V. Kalyatskaya, G.N. Amelina, A.Yu. Vodyakin, N.B. Yegorov. Technology of ura- nium and plutonium: Textbook. Tomsk Polytechnic University, Tomsk, 2007, 97 p. 2. I. Bowen, A. Walder, T. Hodgson, R. Parrish. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solu- tion by inductively coupled plasma – multiple col- lector – mass spectrometry // Application of induc- tively coupled plasma mass spectrometry to ra- dionuclide determinations: Second Volume. 1998, ASTM STP 1344, p. 22-31. 3. C 1477-00. Standard test method for isotopic abun- dance analysis of uranium hexafluoride by multi- collector inductively coupled plasma mass spec- trometry // Annual book of ASTM standards. 2001, v. 12.01, p. 1012-1017. 4. A.V. Saprygin, B.G. Dzhavaev, A.A. Makarov. The analytical characteristics of ICP-MS-MC for deter- mining the isotopic composition of uranium, ob- tained using high-accuracy standard samples // Ana- lytics and Control. 2003, № 1, p. 68-73. 5. A.A. Odintsov. Alpha-spectrometric determination of uranium isotope composition in liquid radioactive waste of the “Ukrytie” object // Problems of Safety of Nuclear Power Plants and Chernobyl. 2008, № 10, p. 147-155. ISSN 1562-6016. ВАНТ. 2021. № 3(133) 85 6. A.R. Gubal. Direct elemental and isotopic analysis of solid-phase nonconducting materials using a time-of-flight mass spectrometer with pulsed glow discharge: Ph.D. thesis. 2015, St. Petersburg, 172 p. 7. T.D. Reilly, R.B. Walton, J.L. Parker. The enrich- ment meter – a simple method for measuring iso- topic enrichment: Report # LA-4605-MS, LANL, Los Alamos, USA. 1970, 19 p. 8. R. Harry, J. Aaldijk, J. Braak. Gamma-spectroscopic determination of isotopic composition without use of standards // Proceedings of IAEA symposium on Safeguarding Nuclear Materials, Vienna, Austria. 1975, p. 235. 9. R. Gunnik, W. Ruther, P. Miller, J. Goerten. MGAU: A new analysis code for measuring U-235 enrichments in arbitrary samples: Preprint UCRL- JC-114713, LLNL, Livermore, USA. 1994, p. 1-4. 10. D.T. Vo, Th.E. Sampson. Uranium isotopic analysis with the FRAM isotopic analysis code: Report # LA- 13580, LANL, Los Alamos, USA. 1999, 24 p. 11. M. Koskelo, B. McGinnis, D. Vo, T. Wang, P. Peerani, G. Renha, F. Cordeiro. Sustainability of gamma-ray isotopic evaluation codes: Report # LA- UR-10-03727, LANL, Los Alamos, USA. 2010, 15 p. 12. M. Koskelo, J. Chapman, J. Marsh, S. Stevens. Comparison of the performance of different uranium enrichment analysis codes using range of detector types // Proceedings of the 7-th International Con- ference on Facility Operations – Safeguard Inter- face, Oak Ridge (USA). 2004, p. 1-9. 13. D. Vo, Th. Sampson. Uranium isotopic analysis with the FRAM isotopic analysis code: Report # LA- 13580, LANL, Los Alamos, USA. 1999, 30 p. 14. A.N. Berlizov, V.V. Tryshyn. Study of the MGAU applicability to accurate isotopic characterization of uranium samples: Report # IAEA-SM-367/14/05/P, IAEA, Vienna, Austria. 2001, 13 p. 15. T. Rucker, C. Johnson. Calculation of uranium iso- topic activity composition based on data from vari- ous assay methods [Electronic resource] / Bioassay Analytical Environmental Radiochemistry. – Way to access: http://www.lanl.gov/BAER-Conference /BAERCon-43docs.html. 16. C. Nguyen, J. Zsigrai. Gamma-spectrometric ura- nium age-dating using intrinsic efficiency calibration // Nucl. Instr. Meth. 2006, v. B243, p. 187-192. Article received 15.02.2021 ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ИЗОТОПА 234U В УРАНСОДЕРЖАЩИХ МАТЕРИАЛАХ МЕТОДОМ ГАММА-СПЕКТРОМЕТРИИ ВЫСОКОГО РАЗРЕШЕНИЯ Д.В. Кутний, Д.Д. Бурдейный, Н.Н. Савченко Проанализированы существующие методы неразрушающего определения количественного содержания изотопа 234U в урансодержащих материалах, а также предложен альтернативный метод, основанный на под- ходе калибровки детектора по «характерной» эффективности. В качестве исследуемых образцов использо- вали сертифицированные стандартные образцы урансодержащих материалов CRM 969 и CRM 146 (интер- вал исследуемых обогащений по 235U (0,3…93%), измерения проводили с помощью широкодиапазонного детектора на основе германия высокой чистоты типа BeGe 3830 (Canberra, США) площадью 38 см2 и тол- щиной 3 см. Использование подхода калибровки детектора по «характерной» эффективности для анализа 234U приводит к снижению погрешности измерений до 7,5% во всем диапазоне обогащений по 235U (0,3…93%) и исследуемых концентраций 234U (20…9800 г/г). Предлагаемый метод не требует наличия стандартных образцов для калибровки оборудования, не зависит от физической (химической) формы иссле- дуемых материалов и геометрии измерений. ВИЗНАЧЕННЯ ВМІСТУ ІЗОТОПУ 234U В УРАНВМІЩУЮЧИХ МАТЕРІАЛАХ МЕТОДОМ ГАММА-СПЕКТРОМЕТРІЇ ВИСОКОГО РОЗПОДІЛЕННЯ Д.В. Кутній, Д.Д. Бурдейний, Н.М. Савченко Проаналізовано існуючі методи неруйнівного визначення кількісного вмісту ізотопу 234U в уранвміщую- чих матеріалах, а також запропоновано альтернативний метод, заснований на підході калібрування детекто- ра за «характерною» ефективністю. В якості досліджуваних зразків використовували сертифіковані стандар- тні зразки уранвміщуючих матеріалів CRM 969 і CRM 146 (інтервал збагачень по 235U (0,3...93%), вимірю- вання проводили за допомогою широкодіапазонного детектора на основі германію високої чистоти типу BeGe 3830 (Canberra, США) площею 38 см2 і товщиною 3 см. Використання підходу калібрування детектора за «характерною» ефективністю для аналізу 234U призводить до зниження похибки вимірювань до 7,5% у всьому діапазоні збагачень по 235U (0,3...93%) і концентрацій 234U (20...9800 г/г). Запропонований метод не вимагає наявності стандартних зразків для калібрування обладнання, не залежить від фізичної (хімічної) форми досліджуваних матеріалів і геометрії вимірювань.