General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I

Based on literary sources, we present here the data on electron affinity values for a variety of negative atomic ions, and also, for some molecules and radicals being of interest for current experimental studies. Besides, the ionization potentials are given for nearly all ionization states of some e...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2021
Автори: Skibenko, E.I., Yuferov, V.B., Ozerov, A.N., Buravilov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195127
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I / E.I. Skibenko, V.B. Yuferov, A.N. Ozerov, I.V. Buravilov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 11-17. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195127
record_format dspace
spelling Skibenko, E.I.
Yuferov, V.B.
Ozerov, A.N.
Buravilov, I.V.
2023-12-03T13:46:06Z
2023-12-03T13:46:06Z
2021
General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I / E.I. Skibenko, V.B. Yuferov, A.N. Ozerov, I.V. Buravilov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 11-17. — Бібліогр.: 22 назв. — англ.
1562-6016
PACS: 52.25.Jm; 52.50.Dg; 41.75.Ak
DOI: https://doi.org/10.46813/2021-134-011
https://nasplib.isofts.kiev.ua/handle/123456789/195127
Based on literary sources, we present here the data on electron affinity values for a variety of negative atomic ions, and also, for some molecules and radicals being of interest for current experimental studies. Besides, the ionization potentials are given for nearly all ionization states of some electronegative elements (C, O, F, Cl). For the said elements, the ionization-recombination parameters and the dependences of the fractional values (ionic fraction) for ionization states and on the electron temperature within the framework of ionization equilibrium are given. A comparison is carried out between the calculated and experimental distributions of the fractions of multicharged C⁺⁴ ions versus electron temperature.
На основі літературних джерел наведені дані по величинам спорідненості до електрону для ряду негативних атомарних іонів і для деяких молекул і радикалів, що представляють інтерес для експериментальних досліджень, що проводяться. Наведено також потенціали іонізації майже за всіма іонізаційними станами для деяких електронегативних елементів (C, O, F, Cl). Для них же наведені іонізаційно-рекомбінаційні параметри і залежності фракційних значень (ionic fraction) по іонізаційним станам від температури електронів у рамках іонізаційної рівноваги (ionization equilibria). Проведено порівняння розрахункових і експериментальних даних за розподілом частки багатозарядних іонів С⁺⁴ від температури електронів.
На основе литературных источников приведены данные по величинам сродства к электрону для ряда отрицательных атомарных ионов и для некоторых молекул и радикалов, представляющих интерес для проводимых экспериментальных исследований. Приведены также потенциалы ионизации почти по всем ионизационным состояниям для некоторых электроотрицательных элементов (C, O, F, Cl). Для них же приведены ионизационно-рекомбинационные параметры и зависимости фракционных значений (ionic fraction) по ионизационным состояниям от температуры электронов в рамках ионизационного равновесия (ionization equilibria). Проведено сравнение расчетных и экспериментальных данных по распределениям доли многозарядных ионов С⁺⁴ от температуры электронов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Relativistic and nonrelativistic plasma electronics
General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
Загальна характеристика та іонізаційно-рекомбінаційні властивості електронегативних елементів, присутніх у плазмовому розряді при роботі плазмових комутаторів струму. Частина I
Общая характеристика и ионизационно-рекомбинационные свойства электроотрицательных элементов, присутствующих в плазменных разрядах при работе плазменных коммутаторов тока. Часть I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
spellingShingle General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
Skibenko, E.I.
Yuferov, V.B.
Ozerov, A.N.
Buravilov, I.V.
Relativistic and nonrelativistic plasma electronics
title_short General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
title_full General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
title_fullStr General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
title_full_unstemmed General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I
title_sort general characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. part i
author Skibenko, E.I.
Yuferov, V.B.
Ozerov, A.N.
Buravilov, I.V.
author_facet Skibenko, E.I.
Yuferov, V.B.
Ozerov, A.N.
Buravilov, I.V.
topic Relativistic and nonrelativistic plasma electronics
topic_facet Relativistic and nonrelativistic plasma electronics
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Загальна характеристика та іонізаційно-рекомбінаційні властивості електронегативних елементів, присутніх у плазмовому розряді при роботі плазмових комутаторів струму. Частина I
Общая характеристика и ионизационно-рекомбинационные свойства электроотрицательных элементов, присутствующих в плазменных разрядах при работе плазменных коммутаторов тока. Часть I
description Based on literary sources, we present here the data on electron affinity values for a variety of negative atomic ions, and also, for some molecules and radicals being of interest for current experimental studies. Besides, the ionization potentials are given for nearly all ionization states of some electronegative elements (C, O, F, Cl). For the said elements, the ionization-recombination parameters and the dependences of the fractional values (ionic fraction) for ionization states and on the electron temperature within the framework of ionization equilibrium are given. A comparison is carried out between the calculated and experimental distributions of the fractions of multicharged C⁺⁴ ions versus electron temperature. На основі літературних джерел наведені дані по величинам спорідненості до електрону для ряду негативних атомарних іонів і для деяких молекул і радикалів, що представляють інтерес для експериментальних досліджень, що проводяться. Наведено також потенціали іонізації майже за всіма іонізаційними станами для деяких електронегативних елементів (C, O, F, Cl). Для них же наведені іонізаційно-рекомбінаційні параметри і залежності фракційних значень (ionic fraction) по іонізаційним станам від температури електронів у рамках іонізаційної рівноваги (ionization equilibria). Проведено порівняння розрахункових і експериментальних даних за розподілом частки багатозарядних іонів С⁺⁴ від температури електронів. На основе литературных источников приведены данные по величинам сродства к электрону для ряда отрицательных атомарных ионов и для некоторых молекул и радикалов, представляющих интерес для проводимых экспериментальных исследований. Приведены также потенциалы ионизации почти по всем ионизационным состояниям для некоторых электроотрицательных элементов (C, O, F, Cl). Для них же приведены ионизационно-рекомбинационные параметры и зависимости фракционных значений (ionic fraction) по ионизационным состояниям от температуры электронов в рамках ионизационного равновесия (ionization equilibria). Проведено сравнение расчетных и экспериментальных данных по распределениям доли многозарядных ионов С⁺⁴ от температуры электронов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195127
citation_txt General characterization and ionization-recombination properties of electronegative elements present in plasma discharges at plasma current switch operation. Part I / E.I. Skibenko, V.B. Yuferov, A.N. Ozerov, I.V. Buravilov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 11-17. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT skibenkoei generalcharacterizationandionizationrecombinationpropertiesofelectronegativeelementspresentinplasmadischargesatplasmacurrentswitchoperationparti
AT yuferovvb generalcharacterizationandionizationrecombinationpropertiesofelectronegativeelementspresentinplasmadischargesatplasmacurrentswitchoperationparti
AT ozerovan generalcharacterizationandionizationrecombinationpropertiesofelectronegativeelementspresentinplasmadischargesatplasmacurrentswitchoperationparti
AT buraviloviv generalcharacterizationandionizationrecombinationpropertiesofelectronegativeelementspresentinplasmadischargesatplasmacurrentswitchoperationparti
AT skibenkoei zagalʹnaharakteristikataíonízacíinorekombínacíinívlastivostíelektronegativnihelementívprisutníhuplazmovomurozrâdíprirobotíplazmovihkomutatorívstrumučastinai
AT yuferovvb zagalʹnaharakteristikataíonízacíinorekombínacíinívlastivostíelektronegativnihelementívprisutníhuplazmovomurozrâdíprirobotíplazmovihkomutatorívstrumučastinai
AT ozerovan zagalʹnaharakteristikataíonízacíinorekombínacíinívlastivostíelektronegativnihelementívprisutníhuplazmovomurozrâdíprirobotíplazmovihkomutatorívstrumučastinai
AT buraviloviv zagalʹnaharakteristikataíonízacíinorekombínacíinívlastivostíelektronegativnihelementívprisutníhuplazmovomurozrâdíprirobotíplazmovihkomutatorívstrumučastinai
AT skibenkoei obŝaâharakteristikaiionizacionnorekombinacionnyesvoistvaélektrootricatelʹnyhélementovprisutstvuûŝihvplazmennyhrazrâdahpriraboteplazmennyhkommutatorovtokačastʹi
AT yuferovvb obŝaâharakteristikaiionizacionnorekombinacionnyesvoistvaélektrootricatelʹnyhélementovprisutstvuûŝihvplazmennyhrazrâdahpriraboteplazmennyhkommutatorovtokačastʹi
AT ozerovan obŝaâharakteristikaiionizacionnorekombinacionnyesvoistvaélektrootricatelʹnyhélementovprisutstvuûŝihvplazmennyhrazrâdahpriraboteplazmennyhkommutatorovtokačastʹi
AT buraviloviv obŝaâharakteristikaiionizacionnorekombinacionnyesvoistvaélektrootricatelʹnyhélementovprisutstvuûŝihvplazmennyhrazrâdahpriraboteplazmennyhkommutatorovtokačastʹi
first_indexed 2025-11-26T23:07:25Z
last_indexed 2025-11-26T23:07:25Z
_version_ 1850779717190287360
fulltext ISSN 1562-6016. ВАНТ. 2021. № 4(134) 11 https://doi.org/10.46813/2021-134-011 GENERAL CHARACTERIZATION AND IONIZATION- RECOMBINATION PROPERTIES OF ELECTRONEGATIVE ELEMENTS PRESENT IN PLASMA DISCHARGES AT PLASMA CURRENT SWITCH OPERATION. PART I E.I. Skibenko, V.B. Yuferov, A.N. Ozerov, I.V. Buravilov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: skibenko38@gmail.com; ozerov@kipt.kharkov.ua Based on literary sources, we present here the data on electron affinity values for a variety of negative atomic ions, and also, for some molecules and radicals being of interest for current experimental studies. Besides, the ioni- zation potentials are given for nearly all ionization states of some electronegative elements (C, O, F, Cl). For the said elements, the ionization-recombination parameters and the dependences of the fractional values (ionic fraction) for ionization states and on the electron temperature within the framework of ionization equilibrium are given. A comparison is carried out between the calculated and experimental distributions of the fractions of multicharged C+4 ions versus electron temperature. PACS: 52.25.Jm; 52.50.Dg; 41.75.Ak INTRODUCTION In the earlier papers [1 - 7] concerned with the prob- lems of creation and research of a compact pulsed elec- tron accelerator based on the plasma-filled diode, it has been indicated that, apart from the natural-origin ele- ments, the spectrum of residual atmosphere inside the vacuum chamber may show up the elements of the elec- tronegative Mendeleyev's group. These elements may appear as a result of sputtering of key parts and details of the plasma guns involved in the experiment, and also, due to the external and internal gas puffing into the sys- tem for providing optimum conditions and results of filling the discharge gap of the plasma current switch (PCS) with plasma. The necessity of achieving this gas puffing effect was specified as early as at the moment of setting the problem, viz., creation of high-current elec- tron accelerators (HCEA) and realization of first ex- periments. For example, it was suggested in ref. [1] that the parameters of the PCS, and eventually of HCEA, could be stabilized through keeping constant the charge- mass characteristic of the plasma bunch and the total number of particles contained in it. Further on [2 - 7], studies were made into the behavior of the switched current versus the plasma gun voltage, and the energy content of gun power, the residual gas density in the PCS chamber. It has been demonstrated that the stability increase in the PCS (and hence, the HCEA) operating parameters can be attained by increasing the amount and density of plasma in the discharge gap, and also, by making the plasma density distribution along the annu- lar gap more uniform. At that, the switching current value can be increased either by enhancing the plasma injection into the discharge gap, or by applying addi- tional gas injection, external or internal. Gases with low atomic number (H2, D2, He) are best suited to the exter- nal gas injection. The use of planar-type plasma guns with soft-dielectric surface breakdown, and also, the cable-type guns [8] may cause plasma contamination with atoms and ions of electronegative elements, e.g., fluorine, carbon and their compounds. In this connec- tion, it appears of interest and advantage to trace their effect on the PCS plasma, including the processes of ionization, recombination, and emission from plasma. 1. GENERAL DESCRIPTION OF ELECTRONEGATIVE ELEMENTS The choice of electronegative elements C, O, F, Cl for consideration has been prompted in our case by ex- perimental conditions, at which by reason of occurrence of some physical processes (desorption, decomposition, sputtering, dissociation, ionization, recombination) in the active vacuum volume there may appear (in con- trolled/uncontrolled way) and accumulate some amounts of the mentioned elements or their chemical species in both neutral (atoms, molecules) or ionized (positive and negative ions of different multiplicity) states. So, it stands to mention some of their general characteristics and properties. The electron affinity [9], i.e., the energy released at production of negative ion from the neutral atom and electron (А+е=А–), together with the ionization poten- tial [10], are the important quantitative characteristics of the electronegativity of elements, which plays a large role in the molecular structure. In fact, the negative ion concept implies the atom, the molecule or the molecular group with a negative total charge. Free negative ions generally carry only unit excess negative charge. The negative ions in electrolytes and ionic crystals are most often multicharger. Directly in gas, the negative ions will be produced either as a result of dissociation of neutral molecules and molecular ions, or due to the transfer of one or a few electrons at heavy particle colli- sions during charge exchange. The additional electron is easiest to be captured by the atoms, which have single vacancies in outer shells, and therefore, the halogens (F, Cl, Br, I, At) should be strongly electronegative. The atoms with fully filled shells are poorly suited for nega- tive ion production. Therefore, the inert gases are inca- pable of producing stable negative ions. For the nega- tive ion to be stable, its binding energy should exceed the neutral atom-binding energy. Mathematically, it can be written as ISSN 1562-6016. ВАНТ. 2021. № 4(134) 12 0 0 1 1 1 1 1 ( ) 0 z zE E Ei ii i or zE E Ei i i              , (1) where Ei 0 is the binding energy of the i-th atomic elec- tron prior to additional electron attachment, Ei – is the binding energy of the same atomic electron after the attachment, E1 is the binding energy of the additional electron after its attachment. The left-hand side of inequality (1) is called the elec- tron affinity of the atom. It is represented as the total energy difference of the ground states of the atom and the ion, and is denoted as EA. In principle, ЕА is equal to the energy required for the most weakly attached electron to separate from the ion (detachment energy for ion). Table 1 lists the electron affinity values, which were obtained experimentally, theoretically and empiri- cally by extrapolation for a number of negative atomic ions. Table 2 gives the electron affinity values for a vari- ety of molecules and radicals. The values were deter- mined as the energy difference between the neutral molecule and the corresponding molecular ion. Table 1 Electron affinity values for some negative atomic ions Ion H- B- C- N- O- F- Al- Si- Cl- Br- I- ЕА, eV 0.754 0.33 1.33 0.54 1.465 3.62 0.52 1.46 3.76 3.51 3.17 Table 2 Electron affinity values for a variety of molecules and radicals Ion H2 - O2 - OH- N2 - NO2 - NO3 - CH- CN- C2 - C3 - SF5 - ЕА, eV 0.9 0.44 1.78 <0 1.6 3.9 ~1.6 3.1 ~3.2 2.5 3.39 The above-given electron affinity data encourage us to point out the following. 1. The positive electron affinity points to the nega- tive ion stability. 2. The experimental and theoretical data are consid- ered reliable to the accuracy of 0.1 eV, except for Na– and P–. 3. Determination of electron affinity for the mole- cules is a much more difficult problem than for atoms, because it calls for carrying out spectroscopic studies (measurements) with improved spectral resolution. 4. The affinity for two and more electrons, i.e., the energy of doubly- or multi-charged negative ion forma- tion from the atom and two or more electrons, is always negative. For example, the formation of the O– ion from O+2e is supposed to take about 7 eV, whereas the for- mation of the S– ion from S+2e takes about 3.5 eV. In the general case, the electric (nuclear) system, consist- ing of the nucleus and (z+k) electrons, i.e., in the form of the negative ion A-k, at k1, is always unstable and must break up with energy release. 5. Doubly charged negative ions were never ob- served in gases. The reason is that the second electron experiences a strong electrostatic repulsion. Therefore, the probability of the second electron attachment is neg- ligibly small. Among the parameters of certain elements, called as electron affinity, another parameter of importance that characterizes the special their features and electronega- tiveness of the elements is the potential of ionization over all ionization states. Table 3 lists this parameter values [11] for four elements (C, O, F, Cl) being the subject of the present study. Table 3 Ionization potentials for C, O, F, Cl Carbon Oxygen Fluorine Chlorine i ui, eV i ui, eV i ui, eV i ui, eV 1 11.264 1 13.614 1 17.418 1 13.01 2 24.376 2 35.146 2 34.980 2 23.80 3 47.864 3 54.934 3 62.646 3 39.90 4 64.476 4 77.394 4 87.23 4 53.3 5 391.986 5 113.873 5 114.214 5 67.8±0.2 6 489.84 6 138.08 6 157.117 6 96.6±0.3 - 7 739.114 7 185.139 7 114.2±0.1 - 8 871.12 8 935.8±0.3 8 348.5 - - - 9 1101.8 9 400.3±0.1 - - - - - 10 455.3 - - - - - 11 531.4 - - - - - 12…17 - ISSN 1562-6016. ВАНТ. 2021. № 4(134) 13 2. IONIZATION-RECOMBINATION PROPERTIES AND PARAMETERS OF ELECTRONEGATIVE ELEMENTS The problem of ionization (coronal) equilibrium be- longs to the domain of recombination-ionization equi- librium and the charged-state equilibrium of the ions under consideration [12]. The time-varying spectral line intensity of highly ionized ions should be treated in terms of the rate of ionization and recombination [13]. The stationary populations of ions having different charges depend not only on the physics of atomic proc- esses, but also on the ion motion in the plasma. At a low diffusion rate, the spatial profiles of ions will corre- spond to the coronal equilibrium, while at a quick ion motion through the plasma they will correspond to the non-coronal ionization. We now mention some collective aspects of the processes of ionization and recombination. The set of conditions and parameters necessary for formulating the equation of balance in the many-particle system (i+, i, e-) includes the following. 1. The most probable collisions are elastic colli- sions, which establish the Maxwellian distribution func- tion. 2. The main collision types are: e– i+ (or e- p+, i.e., electrons and protons) + charge-exchange process. 3. Since υe > υp (υi), the have a greater impact on the ionization/excitation processes. 4. Pair collisions are more important than many- particle collisions. The three-body recombination is also of importance. 5. If the processes of photoionization and photoexci- tation are neglected, then the optically thin plasma ap- proximation is used. The equilibrium equation includes the terms of two types: radiation (radiation-recombination) and colli- sional terms. Consideration is given to three ionic groups: 1) excited-state ions, but not metastable; 2) ground-state ions; 3) metastable-state ions. The equa- tion describing the rate of ion density variation, n(z), with the charge z has the form   [ ( 1) ( 1, ) ( ) ( , 1) ( ) ( , 1) ( 1) ( 1, )], dn z dt n n z S z z n z z ze n z S z z n z z z             (2) where S(z, z+1) is the effective ionization coefficient, α(z, z-1) is the effective recombination coefficient. Equation (2) takes no account of the multiple ioniza- tion. Furthermore, the multiple ionization is regarded as unlikely, and the contribution of metastable levels is neglected. The basic plasma parameter, which affects the time of achieving the ionization equilibrium steady-state, when ionization is balanced by recombination, is the plasma density. At the same time, the ionic charge state, attained through realization of ionization equilibrium, is determined by the electron temperature. Considering that at the ionization equilibrium state the rates of ioni- zation and recombination are much the same, the time of steady-state equilibrium achievement can be esti- mated by the formula tion. eq=1012·ne -1, s. For comparison, Table 4 gives the relaxation time values for some levels of hydrogen-like atoms. Table 4 Relaxation times for some levels of hydrogen-like atoms Θ ne τ, s τ, s τ, s τ, s К eV cm-3 p=1 p=2 p=3 p=4 2.56·105 22.07 1.0·108 1.3·10-1 2.1·10-9 1.0·10-8 5.5·10-6 1.0·1012 1.3·10-5 2.1·10-9 9.8·10-9 9.8·10-10 1.0·1015 1.3·10-8 9.3·10-10 4.1·10-10 9.8·10-13 1.0·1018 1.3·10-11 1.7·10-12 4.3·10-13 9.8·10-16 Here p is the principal quantum number according to the Bohr-Sommerfeld theory, equal to the sum of two (azimuthal n0 and radial nr) quantum numbers. The p=1, 2, 3, 4 values correspond to the states K, L, M, and N; Θ and ne are, respectively, the reduced temperature and density of electrons. The relaxation time values are inversely related to z4. At that, the time of steady-state ionization equilibrium achievement must be considera- bly shorter than the required energy confinement time, i.e., the relationship tion. eq should be compared with the Lawson criterion nτE  1014 cm-3s. In a number of works [14 - 21], within the ionization equilibrium approximation for different ionization states, the ionic fractions were determined as functions of electron temperature for different elements. For ex- ample, the data are reported for H in [14], for C in [15], for N, O, Xe in [16], for Ar and Ti in [17], for Kr in [18] and for multicomponent gas-metal (Ar+Ti) plasma of a pulsed reflex discharge in [19]. The authors of free- standing works [20, 21] give the data for the element groups comprised of 11 and 28 names respectively. For tasks set in the given case, the work [21] is the most acceptable. Based on the above-given literary sources [14 - 21], we have obtained the following information data for certain electronegative elements (such as car- bon, oxygen, fluorine, chlorine), in the form of depend- ences χi = f(Te) of fractional values (ionic fractions), where χi = -log(Ni/Ntotal), on the electron temperature within the ionization equilibria (Figs. 1-5). Table 5 gives distribution of investigated energy ranges by ioni- zation states for different electronegative elements shown in Figs. 1 to 5. Note that the left-hand branch of the χi = f(Te) curves at i1 relates to the recombination part of the ionization equilibrium process, while the right-hand part at i>1  to the ionization part. Figs. 1-5 show the temperature dependences of ionic fractions χi = f(Te) for carbon (see Fig. 1) over the ionization states i=I-VI, for oxygen (see Fig. 2) over i=I-VIII, for fluorine (see Fig. 3) over i=I- IX, for chlorine over i=I-IX (see Fig. 4) and over i=X- ISSN 1562-6016. ВАНТ. 2021. № 4(134) 14 XVII (see Fig. 5). Fig. 2,a,b illustrates the work data of two corporate authors [20, 21] for oxygen. The differ- ence between their results varies within 15 to 40%. Table 5 Distribution of the studied energy ranges by ionization states for various electronegative elements Ionization state i=1 2 3 4 5 6 7 8 9 10 11 С Δε, eV 0.86± 16.38 0.86± 31.90 2.41± 55.17 5.52± 319 7.07± 862 39.7± 862 О Δε, eV 0.86± 16.38 0.86± 39.7 3.97± 47.41 6.29± 62.93 7.84± 163.79 16.38± 551.72 31.90± 3189.7 70.68± 6293 F Δε, eV 0.86± 8.62 0.86± 31.89 3.96± 55.17 6.29± 70.68 7.84± 78.44 16.38± 318.96 31.89± 706.8 39.65± 4741.4 78.44± 8620.7 Cl Δε, eV 0.86± 6.29 0.86± 24.14 2.41± 47.41 3.96± 55.17 6.29± 62.93 7.84± 78.44 16.38± 163.79 24.14± 396.55 47.71± 474.1 62.93± 551.7 78.44± 629.3 i 12 13 14 15 16 17 El em en ts an d En er gy ra ng es Δ ε Cl Δε, eV 86.2± 784.5 163.8± 1637.9 241.4± 4741 319± 7844 319± 47414 551.7± 47414 Fig. 1. Carbon ionic fractions versus electron tempera- ture for ionization states ranging from I to VI, according to J.M. Shull and M. van Steenberg [20] Fig. 2a. Oxygen ionic fractions versus electron temperature for ionization states ranging from I to VIII, according to P. Mazzotta et al [21] Fig. 2b. Oxygen ionic fractions versus electron tem- perature for ionization states ranging from I to VIII, according to J.M. Shull and M. van Steenberg [20] Fig. 3. Fluorine ionic fractions versus electron temperature for ionization states ranging from I to IX, according to P. Mazzotta et al [21] ISSN 1562-6016. ВАНТ. 2021. № 4(134) 15 Fig. 4. Chlorine ionic fractions versus electron temperature for ionization states ranging from I to IX, according to P. Mazzotta et al [21] Fig. 5. Chlorine ionic fractions versus electron temperature for ionization states ranging from X to XVII, according to P. Mazzotta et al [21] Fig. 6. Fluorine ionic fractions distribution in different ionization states in the temperature range from 104 to109 K (0.862…86207 eV) The distributions of fluorine/chlorine ionic fractions over different ionization states were also obtained in the temperature range 104…109 К (~1…104 eV) (Figs. 6-8). In this case, with the use of data from ref. [20] and Fig. 1, calculations were performed to determine the fraction distributions of the multicharged ions C+4 in the energy range from 5.52 to 55.17 eV. The resulting rela- tionship Ni=4/Ntotal=f(T) (Fig. 9,a) has made it possible to determine (from the half width of the curve in the region of Ni/Nt>1% and at ΔT from 23 down to 13 eV) the average C+4 fraction value which is ~ 15%, even though the maximum fraction value in the narrow en- ergy range (≤ 8 eV) may reach ~ 70%. Fig. 7. Fluorine ionic fractions distribution in different ionization states versus electron temperature: 1 – the black line is plotted by the computational points; 2 – the red line is plotted by the averaged temperature ranges Fig. 8. Chlorine ionic fractions distribution in different ionization states at electron temperatures ranging from 104 to 109 K a b Fig. 9. Temperature dependence of the relative amount of multicharged C4+ ions, calculated with regard to the data of Fig. 1,а; Comparison between the carbon multicharged ionic fractions as functions of temperature, calculated with regard to the data of [20] and Fig. 1, and determined by experiment [22] (b) ISSN 1562-6016. ВАНТ. 2021. № 4(134) 16 The studies [22] into the special features of the en- ergy-mass composition of the plasma of the nanosecond coaxial vacuum surface discharge have revealed the presence of differently charged carbon ions (C+1, C+2, C+3, C+4). A correlation was made between the experi- mental fractions of the multicharged C+4 ions with the computational estimates. The results of the correlation are presented in Fig. 9,b. On the left, curve 1 shows the calculated C+4 ionic fraction distribution obtained with the use of the data from ref. [20] under the assumption of the ionization equilibrium. At the right top of Fig. 9,b the curves show the experimental results of work [22] at different polarities of the electrode-dielectric (high pres- sure polyethylene) pair (+ : curve 2, - : curve 3). RESULTS AND CONCLUSIONS The conducted investigations are mainly aimed at evaluating the impact of some factors, which cause the plasma-bridge formation and decay in the PCS electrode gap, on the efficiency of the PCS operation in attaining the maximum current values and voltage multiplication. Among these factors is the electronegativeness of cer- tain elements that enter into the weight composition of plasma in the form of ionized and neutral particles. The main results of the present work can be summa- rized as follows. 1. General characterization has been given for sev- eral electronegative elements (C, O, F, Cl) that present some features of interest for the current studies. The data include the electron affinity values and the values of ionization potentials in different ionization states. 2. With due regard to the ionization-recombination properties and the parameters of the electronegative elements under consideration, studies have been made to determine the distributions of fluorine and chlorine ionic fractions in different ionization states in the con- text of ionization equilibrium. At that, the electron tem- perature was varied in the range from 1 to 104 eV. 3. Comparison has been made between the calcu- lated and experimental data on the distribution of mul- ticharged C+4 ionic fractions as a function of electron temperature. REFERENCES 1. V.G. Artyukh, E.I. Skibenko, Yu.V. Tkach, V.B. Yuferov. Study of a high-current plasma open- ing switch: Preprint KIPT 89-28. Kharkiv: NSC KIPT, 1989, p. 12. 2. V.G. Artyukh, E.I. Skibenko, Yu.V. Tkach, V.B. Yuferov. Plasma-vacuum characteristics of a high-speed current switch: Preprint KIPT 94-12. Kharkiv: NSC KIPT. 1994, p. 9. 3. V.G. Artyukh, E.I. Skibenko, Yu.V. Tkach, V.B. Yuferov. Investigation on the possibility of stabilizing the high-speed current switch perform- ance // Ukr. Fiz. Zh. 1995, v. 40, № 8, p. 805-806. 4. E.I. Skibenko, V.B. Yuferov, V.G. Artyukh, I.N. Onischenko. High-current pulse switch and its plasma-vacuum characteristics. Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2000, № 1, p. 143-145. 5. V. Yuferov, E. Skibenko, I. Onishchenko, et al. In- vestigation of high-current plasma opening switch at low gas pressure // Digest of Technical Papers/ 12th IEEE International Pulsed Power Conference, v. 2, Monterey, CA. 1999, p. 1215-1217. 6. E.I. Skibenko, V.B. Yuferov. A compact direct- action electron accelerator with efficient nanosecond plasma-opening switch // Problems of Atomic Sci- ence and Technology. 2019, № 4, p. 10-14. 7. E.I. Skibenko, A.N. Ozerov, V.B. Yuferov. Deter- mination of discharge gap conductivity of plasma opening (current) switch // Problems of Atomic Sci- ence and Technology. 2019, № 4, p. 3-9. 8. P.F. Goodrich, D.D. Hinchelwood. High-power opening switch operation on "HAWK" // Proc. IX IEEE Intern. Pulsed Power Conf. Albuquerque. 1993, p. 511-515. 9. V.N. Kondrat’yev. Atomic and molecular structure. M.: “FIZMATGIZ”, 1959, p. 524 (in Russian). 10. Earl. W. Mc Daniel. Collision Phenomena in Ionized Gases // John Wiley and Sons, Inc. New York- London-Sydney. 1964, 832 p. 11. I.K. Kikoin. Physical quantities tables. М.: “At- omizdat”, 1976, 1008 p. (in Russian). 12. C.F. Barnet, M.F. Harrison. Applied atomic collision physics. Plasmas // Academic Press, Inc. 1984. 13. J.B. Hasted. Physics of Atomic Collisions. London Butters Worths, 1964. 14. H. Bohringer, G. Hensler. Metallicity – dependence of radiative cooling in optically thin, hot plasma // As- tronomy and Astrophysics. 1989, v. 215, p. 147-149. 15. R. Clark. Radiation raters for low z impurities in edge plasma // Journal of Nuclear Materials. 1995, v. 220-222, p. 1028-1032. 16. D.E. Past, R.V. Jensen, C.B. Tarter, et al. Steady- state radiative cooling rates for low-density, high- temperature plasma // Atomic Data and Nuclear Data Tables. 1977, v. 20; 35, p. 397-439. 17. J. Abdallah, Ir. R.E.H. Clark. Calculated radiated power loss for neon, silicon, argon, titanium, and iron // Atomic and Plasma – Material Interaction Data for Fusion. 2003, v. 11, p. 21-47. 18. K.B. Fournier, M.J. Maya, D. Pacellab, et al. Calcu- lation of radiative cooling coefficient for krypton in low density plasma // Nuclear Fusion. 2000, v. 40, № 4, p. 847-864. 19. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. Radiation of multicomponent gas-metal plasma of a pulsed reflex discharge // Problems of Atomic Sci- ence and Technology. 2010, № 6, p. 171-173. 20. J. Michael Shull and Michael Van Steenberg. The Ionization Equilibrium of Astrophysical Abundant Elements // The Astrophysical Journal Supplements. Series 48, 1982 January, p. 95-107. 21. P. Mazzotta, G. Mazzitelli, S. Colafrancesco and N. Vittario. Ionization balance for optically thin plasmas: rate coefficients for atoms and of the ele- ments H to Ni // Astronomy and Astrophysics / ar XIV: astro-ph. / 9806391 V1 30 Jun 1998. 22. S.V. Barakhvostov, I.L. Muzyukin, Yu.N. Ver- shinin. Peculiarities of energy-weight plasma com- position of the coaxial nanosecond surface discharge // ZhTF. 2006, v. 76, iss. 9, p. 46-50. Article received 25.05.2021 ISSN 1562-6016. ВАНТ. 2021. № 4(134) 17 ОБЩАЯ ХАРАКТЕРИСТИКА И ИОНИЗАЦИОННО-РЕКОМБИНАЦИОННЫЕ СВОЙСТВА ЭЛЕКТРООТРИЦАТЕЛЬНЫХ ЭЛЕМЕНТОВ, ПРИСУТСТВУЮЩИХ В ПЛАЗМЕННЫХ РАЗРЯДАХ ПРИ РАБОТЕ ПЛАЗМЕННЫХ КОММУТАТОРОВ ТОКА. ЧАСТЬ I Е.И. Скибенко, В.Б. Юферов, А.Н. Озеров, И.В. Буравилов На основе литературных источников приведены данные по величинам сродства к электрону для ряда от- рицательных атомарных ионов и для некоторых молекул и радикалов, представляющих интерес для прово- димых экспериментальных исследований. Приведены также потенциалы ионизации почти по всем иониза- ционным состояниям для некоторых электроотрицательных элементов (C, O, F, Cl). Для них же приведены ионизационно-рекомбинационные параметры и зависимости фракционных значений (ionic fraction) по иони- зационным состояниям от температуры электронов в рамках ионизационного равновесия (ionization equilib- ria). Проведено сравнение расчетных и экспериментальных данных по распределениям доли многозарядных ионов С+4 от температуры электронов. ЗАГАЛЬНА ХАРАКТЕРИСТИКА ТА ІОНІЗАЦІЙНО-РЕКОМБІНАЦІЙНІ ВЛАСТИВОСТІ ЕЛЕКТРОНЕГАТИВНИХ ЕЛЕМЕНТІВ, ПРИСУТНІХ У ПЛАЗМОВОМУ РОЗРЯДІ ПРИ РОБОТІ ПЛАЗМОВИХ КОМУТАТОРІВ СТРУМУ. ЧАСТИНА I Є.І. Скібенко, В.Б. Юферов, О.М. Озеров, І.В. Буравілов На основі літературних джерел наведені дані по величинам спорідненості до електрону для ряду негати- вних атомарних іонів і для деяких молекул і радикалів, що представляють інтерес для експериментальних досліджень, що проводяться. Наведено також потенціали іонізації майже за всіма іонізаційними станами для деяких електронегативних елементів (C, O, F, Cl). Для них же наведені іонізаційно-рекомбінаційні парамет- ри і залежності фракційних значень (ionic fraction) по іонізаційним станам від температури електронів у ра- мках іонізаційної рівноваги (ionization equilibria). Проведено порівняння розрахункових і експерименталь- них даних за розподілом частки багатозарядних іонів С+4 від температури електронів.